Update bert_align.py

This commit is contained in:
nlpfun
2021-11-29 17:19:35 +08:00
parent dea0689cbc
commit 7e1a7e795a

View File

@@ -1,4 +1,4 @@
# 2021/11/27
# 2021/11/29
# bfsujason@163.com
"""
@@ -15,7 +15,6 @@ python bin/bert_align.py \
"""
import os
import sys
import time
import torch
import faiss
@@ -42,99 +41,100 @@ def main():
parser.add_argument('--margin', action='store_true', help='Margin-based cosine similarity')
args = parser.parse_args()
# fixed parameters to determine the
# window size for the first-pass alignment
min_win_size = 10
max_win_size = 600
win_per_100 = 8
# read in embeddings
src_sent2line, src_line_embeddings = read_in_embeddings(args.src_embed[0], args.src_embed[1])
tgt_sent2line, tgt_line_embeddings = read_in_embeddings(args.tgt_embed[0], args.tgt_embed[1])
embedding_size = src_line_embeddings.shape[1]
# Read in source and target embeddings.
src_sent2line, src_line_embeddings = \
read_in_embeddings(args.src_embed[0], args.src_embed[1])
tgt_sent2line, tgt_line_embeddings = \
read_in_embeddings(args.tgt_embed[0], args.tgt_embed[1])
# Perform stentence alignment.
make_dir(args.out)
jobs = create_jobs(args.meta, args.src, args.tgt, args.out)
# start alignment
for rec in jobs:
src_file, tgt_file, align_file = rec.split("\t")
for job in jobs:
src_file, tgt_file, out_file = job.split('\t')
print("Aligning {} to {}".format(src_file, tgt_file))
# read in source and target sentences
# Convert source and target texts into feature matrix.
t_0 = time.time()
src_lines = open(src_file, 'rt', encoding="utf-8").readlines()
tgt_lines = open(tgt_file, 'rt', encoding="utf-8").readlines()
# convert source and target texts into embeddings
# and calculate sentence length
t_0 = time.time()
src_vecs, src_lens = doc2feats(src_sent2line, src_line_embeddings, src_lines, args.max_align - 1)
tgt_vecs, tgt_lens = doc2feats(tgt_sent2line, tgt_line_embeddings, tgt_lines, args.max_align - 1)
src_vecs, src_lens = \
doc2feats(src_sent2line, src_line_embeddings, src_lines, args.max_align - 1)
tgt_vecs, tgt_lens = \
doc2feats(tgt_sent2line, tgt_line_embeddings, tgt_lines, args.max_align - 1)
char_ratio = np.sum(src_lens[0,]) / np.sum(tgt_lens[0,])
print("Reading embeddings takes {:.3f}".format(time.time() - t_0))
print("Vectorizing soure and target texts takes {:.3f} seconds.".format(time.time() - t_0))
# using faiss, find in the target text
# the k nearest neighbors of each source sentence
# Find the top_k similar target sentences for each source sentence.
t_1 = time.time()
if torch.cuda.is_available(): # GPU version
res = faiss.StandardGpuResources()
index = faiss.IndexFlatIP(embedding_size)
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index.add(tgt_vecs[0,:])
xq = src_vecs[0,:]
D,I = gpu_index.search(xq,args.top_k)
else: # CPU version
index = faiss.IndexFlatIP(embedding_size) # use inter product to build index
index.add(tgt_vecs[0,:])
xq = src_vecs[0,:]
D,I = index.search(xq, args.top_k)
print("Finding top-k neighbors takes {:.3f}".format(time.time() - t_1))
D, I = find_top_k_sents(src_vecs[0,:], tgt_vecs[0,:], k=args.top_k)
print("Finding top-k sentences takes {:.3f} seconds.".format(time.time() - t_1))
# find 1-to-1 alignment
# Find optimal 1-1 alignments using dynamic programming.
t_2 = time.time()
src_len = len(src_lines)
tgt_len = len(tgt_lines)
first_alignment_types = make_alignment_types(2) # 0-0 1-0 and 1-1
first_w, first_search_path = find_first_search_path(src_len, tgt_len, min_win_size, max_win_size, win_per_100)
first_pointers = first_pass_align(src_len, tgt_len, first_w, first_search_path, first_alignment_types, D, I, args.top_k)
first_alignment = first_back_track(src_len, tgt_len, first_pointers, first_search_path, first_alignment_types)
print("First pass alignment takes {:.3f}".format(time.time() - t_2))
m = len(src_lines)
n = len(tgt_lines)
first_alignment_types = get_alignment_types(2) # 0-1, 1-0, 1-1
first_w, first_path = find_first_search_path(m, n)
first_pointers = first_pass_align(m, n, first_w,
first_path, first_alignment_types,
D, I, args.top_k)
first_alignment = first_back_track(m, n,
first_pointers, first_path,
first_alignment_types)
print("First-pass alignment takes {:.3f} seconds.".format(time.time() - t_2))
# find m-to-n alignment
# Find optimal m-to-n alignments using dynamic programming.
t_3 = time.time()
second_w, second_search_path = find_second_search_path(first_alignment, args.win, src_len, tgt_len)
second_alignment_types = make_alignment_types(args.max_align)
second_pointers = second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, second_w, second_search_path, second_alignment_types, char_ratio, args.skip, margin=args.margin)
second_alignment = second_back_track(src_len, tgt_len, second_pointers, second_search_path, second_alignment_types)
second_alignment_types = get_alignment_types(args.max_align)
second_w, second_path = find_second_path(first_alignment, args.win, m, n)
second_pointers = second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens,
second_w, second_path, second_alignment_types,
char_ratio, args.skip, margin=args.margin)
second_alignment = second_back_track(m, n, second_pointers,
second_path, second_alignment_types)
print("Second pass alignment takes {:.3f}".format(time.time() - t_3))
# save alignment
print_alignments(second_alignment, align_file)
# save alignment results
print_alignments(second_alignment, out_file)
def second_back_track(i, j, b, search_path, a_types):
alignment = []
while ( i !=0 and j != 0 ):
j_offset = j - search_path[i][0]
a = b[i][j_offset]
s = a_types[a][0]
t = a_types[a][1]
src_range = [i - offset - 1 for offset in range(s)][::-1]
tgt_range = [j - offset - 1 for offset in range(t)][::-1]
alignment.append((src_range, tgt_range))
i = i-s
j = j-t
return alignment[::-1]
def print_alignments(alignments, out):
with open(out, 'wt', encoding='utf-8') as f:
for x, y in alignments:
f.write("{}:{}\n".format(x, y))
@nb.jit(nopython=True, fastmath=True, cache=True)
def second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, w, search_path, align_types, char_ratio, skip, margin=False):
def second_pass_align(src_vecs,
tgt_vecs,
src_lens,
tgt_lens,
w,
search_path,
align_types,
char_ratio,
skip,
margin=False):
"""
Perform the second-pass alignment to extract n-m bitext segments.
Args:
src_vecs: numpy array of shape (max_align-1, num_src_sents, embedding_size).
tgt_vecs: numpy array of shape (max_align-1, num_tgt_sents, embedding_size)
src_lens: numpy array of shape (max_align-1, num_src_sents).
tgt_lens: numpy array of shape (max_align-1, num_tgt_sents).
w: int. Predefined window size for the second-pass alignment.
search_path: numpy array. Second-pass alignment search path.
align_types: numpy array. Second-pass alignment types.
char_ratio: float. Ratio between source length to target length.
skip: float. Cost for instertion and deletion.
margin: boolean. Set to true if choosing modified cosine similarity score.
Returns:
pointers: numpy array recording best alignments for each DP cell.
"""
src_len = src_vecs.shape[1]
tgt_len = tgt_vecs.shape[1]
# intialize sum matrix
# Intialize cost and backpointer matrix
cost = np.zeros((src_len + 1, w))
#back = np.zeros((tgt_len + 1, w), dtype=nb.int64)
back = np.zeros((src_len + 1, w), dtype=nb.int64)
cost[0][0] = 0
back[0][0] = -1
@@ -171,7 +171,11 @@ def second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, w, search_path, al
tgt_v = tgt_vecs[a_2-1,j-1,:]
src_l = src_lens[a_1-1, i-1]
tgt_l = tgt_lens[a_2-1, j-1]
cur_score = get_score(src_v, tgt_v, a_1, a_2, i, j, src_vecs, tgt_vecs, src_len, tgt_len, margin=margin)
cur_score = get_score(src_v, tgt_v,
a_1, a_2, i, j,
src_vecs, tgt_vecs,
src_len, tgt_len,
margin=margin)
tgt_l = tgt_l * char_ratio
min_len = min(src_l, tgt_l)
max_len = max(src_l, tgt_l)
@@ -189,8 +193,29 @@ def second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, w, search_path, al
return back
def second_back_track(i, j, b, search_path, a_types):
alignment = []
while ( i !=0 and j != 0 ):
j_offset = j - search_path[i][0]
a = b[i][j_offset]
s = a_types[a][0]
t = a_types[a][1]
src_range = [i - offset - 1 for offset in range(s)][::-1]
tgt_range = [j - offset - 1 for offset in range(t)][::-1]
alignment.append((src_range, tgt_range))
i = i-s
j = j-t
return alignment[::-1]
@nb.jit(nopython=True, fastmath=True, cache=True)
def get_score(src_v, tgt_v, a_1, a_2, i, j, src_vecs, tgt_vecs, src_len, tgt_len, margin=False):
def get_score(src_v, tgt_v,
a_1, a_2,
i, j,
src_vecs, tgt_vecs,
src_len, tgt_len,
margin=False):
similarity = nb_dot(src_v, tgt_v)
if margin:
tgt_neighbor_ave_sim = get_neighbor_sim(src_v, a_2, j, tgt_len, tgt_vecs)
@@ -229,10 +254,17 @@ def get_neighbor_sim(vec, a, j, len, db):
def nb_dot(x, y):
return np.dot(x,y)
def find_second_search_path(align, w, src_len, tgt_len):
def find_second_path(align, w, src_len, tgt_len):
'''
Convert 1-1 alignment from first-pass to the path for second-pass alignment.
The index along X-axis and Y-axis must be consecutive.
The indices along X-axis and Y-axis must be consecutive.
Args:
align: list of tuples. First-pass alignment results.
w: int. Predefined window size for the second path.
src_len: int. Number of source sentences.
tgt_len: int. Number of target sentences.
Returns:
path: numpy array for the second search path.
'''
last_bead_src = align[-1][0]
last_bead_tgt = align[-1][1]
@@ -246,7 +278,7 @@ def find_second_search_path(align, w, src_len, tgt_len):
align.pop()
align.append((src_len, tgt_len))
prev_src, prev_tgt = 0,0
prev_src, prev_tgt = 0, 0
path = []
max_w = -np.inf
for src, tgt in align:
@@ -262,13 +294,23 @@ def find_second_search_path(align, w, src_len, tgt_len):
return max_w + 1, np.array(path)
def first_back_track(i, j, b, search_path, a_types):
"""
Retrieve 1-1 alignments from the first-pass DP table.
Args:
i: int. Number of source sentences.
j: int. Number of target sentences.
search_path: numpy array. First-pass search path.
a_types: numpy array. First-pass alignment types.
Returns:
alignment: list of tuples for 1-1 alignments.
"""
alignment = []
while ( i !=0 and j != 0 ):
j_offset = j - search_path[i][0]
a = b[i][j_offset]
s = a_types[a][0]
t = a_types[a][1]
if a == 2:
if a == 2: # best 1-1 alignment
alignment.append((i, j))
i = i-s
@@ -277,9 +319,29 @@ def first_back_track(i, j, b, search_path, a_types):
return alignment[::-1]
@nb.jit(nopython=True, fastmath=True, cache=True)
def first_pass_align(src_len, tgt_len, w, search_path, align_types, dist, index, top_k):
#initialize cost and backpointer matrix
def first_pass_align(src_len,
tgt_len,
w,
search_path,
align_types,
dist,
index,
top_k):
"""
Perform the first-pass alignment to extract 1-1 bitext segments.
Args:
src_len: int. Number of source sentences.
tgt_len: int. Number of target sentences.
w: int. Window size for the first-pass alignment.
search_path: numpy array. Search path for the first-pass alignment.
align_types: numpy array. Alignment types for the first-pass alignment.
dist: numpy array. Distance matrix for top-k similar vecs.
index: numpy array. Index matrix for top-k similar vecs.
top_k: int. Number of most similar top-k vecs.
Returns:
pointers: numpy array recording best alignments for each DP cell.
"""
# Initialize cost and backpointer matrix.
cost = np.zeros((src_len + 1, 2 * w + 1))
pointers = np.zeros((src_len + 1, 2 * w + 1), dtype=nb.int64)
cost[0][0] = 0
@@ -323,29 +385,92 @@ def first_pass_align(src_len, tgt_len, w, search_path, align_types, dist, index,
return pointers
@nb.jit(nopython=True, fastmath=True, cache=True)
def find_first_search_path(src_len, tgt_len, min_win_size, max_win_size, win_per_100):
def find_first_search_path(src_len,
tgt_len,
min_win_size = 250,
percent=0.06):
"""
Find the window size and search path for the first-pass alignment.
Args:
src_len: int. Number of source sentences.
tgt_len: int. Number of target sentences.
min_win_size: int. Minimum window size.
percent. float. Percent of longer sentences.
Returns:
win_size: int. Window size along the diagonal of the DP table.
search_path: numpy array of shape (src_len + 1, 2), containing the start
and end index of target sentences for each source sentence.
One extra row is added in the search_path for calculation of
deletions and omissions.
"""
win_size = max(min_win_size, int(max(src_len, tgt_len) * percent))
search_path = []
yx_ratio = tgt_len / src_len
win_size_1 = int(yx_ratio * tgt_len * win_per_100 / 100)
win_size_2 = int(abs(tgt_len - src_len) * 3/4)
w_1 = min(max(min_win_size, max(win_size_1, win_size_2)), max_win_size)
w_2 = int(max(src_len, tgt_len) * 0.06)
w = max(w_1, w_2)
search_path = np.zeros((src_len + 1, 2), dtype=nb.int64)
for i in range(0, src_len + 1):
center = int(yx_ratio * i)
w_start = max(0, center - w)
w_end = min(center + w, tgt_len)
search_path[i] = [w_start, w_end]
win_start = max(0, center - win_size)
win_end = min(center + win_size, tgt_len)
search_path.append([win_start, win_end])
return win_size, np.array(search_path)
return w, search_path
def get_alignment_types(max_alignment_size):
"""
Get all the possible alignment types.
Args:
max_alignment_size: int. Source sentences number +
Target sentences number <= this value.
Returns:
alignment_types: numpy array.
"""
alignment_types = [[0,1], [1,0]]
for x in range(1, max_alignment_size):
for y in range(1, max_alignment_size):
if x + y <= max_alignment_size:
alignment_types.append([x, y])
return np.array(alignment_types)
def find_top_k_sents(src_vecs, tgt_vecs, k=3):
"""
Find the top_k similar vecs in tgt_vecs for each vec in src_vecs.
Args:
src_vecs: numpy array of shape (num_src_sents, embedding_size)
tgt_vecs: numpy array of shape (num_tgt_sents, embedding_size)
k: int. Number of most similar target sentences.
Returns:
D: numpy array. Similarity score matrix of shape (num_src_sents, k).
I: numpy array. Target index matrix of shape (num_src_sents, k).
"""
embedding_size = src_vecs.shape[1]
if torch.cuda.is_available(): # GPU version
res = faiss.StandardGpuResources()
index = faiss.IndexFlatIP(embedding_size)
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index.add(tgt_vecs)
D, I = gpu_index.search(src_vecs, k)
else: # CPU version
index = faiss.IndexFlatIP(embedding_size)
index.add(tgt_vecs)
D, I = index.search(src_vecs, k)
return D, I
def doc2feats(sent2line, line_embeddings, lines, num_overlaps):
"""
Convert texts into feature matrix.
Args:
sent2line: dict. Map each sentence to its ID.
line_embeddings: numpy array of sentence embeddings.
lines: list of sentences.
num_overlaps: int. Maximum number of overlapping sentences allowed.
Returns:
vecs0: numpy array of shape (num_overlaps, num_lines, size_embedding)
for overlapping sentence embeddings.
vecs1: numpy array of shape (num_overlap, num_lines)
for overlapping sentence lengths.
"""
lines = [preprocess_line(line) for line in lines]
vecsize = line_embeddings.shape[1]
vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32)
vecs1 = np.empty((num_overlaps, len(lines)), dtype=np.int)
for ii, overlap in enumerate(range(1, num_overlaps + 1)):
for jj, out_line in enumerate(layer(lines, overlap)):
try:
@@ -353,96 +478,91 @@ def doc2feats(sent2line, line_embeddings, lines, num_overlaps):
except KeyError:
logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line)
line_id = None
if line_id is not None:
vec = line_embeddings[line_id]
else:
vec = np.random.random(vecsize) - 0.5
vec = vec / np.linalg.norm(vec)
vecs0[ii, jj, :] = vec
vecs1[ii, jj] = len(out_line.encode("utf-8"))
return vecs0, vecs1
def preprocess_line(line):
line = line.strip()
if len(line) == 0:
line = 'BLANK_LINE'
return line
def layer(lines, num_overlaps, comb=' '):
"""
make front-padded overlapping sentences
Make front-padded overlapping sentences.
"""
if num_overlaps < 1:
raise Exception('num_overlaps must be >= 1')
out = ['PAD', ] * min(num_overlaps - 1, len(lines))
for ii in range(len(lines) - num_overlaps + 1):
out.append(comb.join(lines[ii:ii + num_overlaps]))
return out
def preprocess_line(line):
"""
Clean each line of the text.
"""
line = line.strip()
if len(line) == 0:
line = 'BLANK_LINE'
return line
def read_in_embeddings(text_file, embed_file):
"""
Read in the overlap lines and line embeddings.
Args:
text_file: str. Overlap file path.
embed_file: str. Embedding file path.
Returns:
sent2line: dict. Map overlap sentences to line IDs.
line_embeddings: numpy array of the shape (num_lines, embedding_size).
For sentence-transformers, the embedding_size is 768.
"""
sent2line = dict()
with open(text_file, 'rt', encoding="utf-8") as fin:
for ii, line in enumerate(fin):
if line.strip() in sent2line:
raise Exception('got multiple embeddings for the same line')
sent2line[line.strip()] = ii
line_embeddings = np.fromfile(embed_file, dtype=np.float32, count=-1)
if line_embeddings.size == 0:
raise Exception('Got empty embedding file')
with open(text_file, 'rt', encoding="utf-8") as f:
for i, line in enumerate(f):
sent2line[line.strip()] = i
line_embeddings = np.fromfile(embed_file, dtype=np.float32)
embedding_size = line_embeddings.size // len(sent2line)
line_embeddings.resize(line_embeddings.shape[0] // embedding_size, embedding_size)
return sent2line, line_embeddings
def make_alignment_types(max_alignment_size):
# Return list of all (n,m) where n+m <= this
alignment_types = []
for x in range(1, max_alignment_size):
for y in range(1, max_alignment_size):
if x + y <= max_alignment_size:
alignment_types.append([x, y])
alignment_types = [[0,1], [1,0]] + alignment_types
return np.array(alignment_types)
def create_jobs(meta, src, tgt, out):
def create_jobs(meta_data_file, src_dir, tgt_dir, alignment_dir):
"""
Creat a job list consisting of source, target and alignment file paths.
"""
jobs = []
fns = get_fns(meta)
for file in fns:
src_path = os.path.abspath(os.path.join(src, file))
tgt_path = os.path.abspath(os.path.join(tgt, file))
out_path = os.path.abspath(os.path.join(out, file + '.align'))
text_ids = get_text_ids(meta_data_file)
for id in text_ids:
src_path = os.path.abspath(os.path.join(src_dir, id))
tgt_path = os.path.abspath(os.path.join(tgt_dir, id))
out_path = os.path.abspath(os.path.join(alignment_dir, id + '.align'))
jobs.append('\t'.join([src_path, tgt_path, out_path]))
return jobs
def get_fns(meta):
fns = []
with open(meta, 'rt', encoding='utf-8') as f:
def get_text_ids(meta_data_file):
"""
Get the text IDs to be aligned.
Args:
meta_data_file: str. TSV file with the first column being text ID.
Returns:
text_ids: list.
"""
text_ids = []
with open(meta_data_file, 'rt', encoding='utf-8') as f:
next(f) # skip header
for line in f:
recs = line.strip().split('\t')
fns.append(recs[0])
text_ids.append(recs[0])
return text_ids
return fns
def print_alignments(alignments, out):
with open(out, 'wt', encoding='utf-8') as f:
for x, y in alignments:
f.write("{}:{}\n".format(x, y))
def make_dir(path):
if os.path.isdir(path):
shutil.rmtree(path)
os.makedirs(path, exist_ok=True)
def make_dir(auto_alignment_path):
"""
Make an empty diretory for saving automatic alignment results.
"""
if os.path.isdir(auto_alignment_path):
shutil.rmtree(auto_alignment_path)
os.makedirs(auto_alignment_path, exist_ok=True)
if __name__ == '__main__':
t_0 = time.time()