import os import sys import argparse import time import math import numba as nb import numpy as np def _main(): # user-defined parameters parser = argparse.ArgumentParser('Sentence alignment using Gale-Church Algrorithm', formatter_class = argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--job', type=str, required=True, help='Job file for alignment task.') args = parser.parse_args() # fixed parameters to determine the # window size for alignment min_win_size = 10 max_win_size = 600 win_per_100 = 8 # alignment types align_types = np.array([ [0,1], [1,0], [1,1], [1,2], [2,1], [2,2] ], dtype=np.int) # prior probability priors = np.array([0, 0.0099, 0.89, 0.089, 0.011]) # mean and variance c = 1 s2 = 6.8 # gale church align job = read_job(args.job) for rec in job: src_file, tgt_file, align_file = rec.split("\t") print("Aligning {} to {}".format(src_file, tgt_file)) src_lines = open(src_file, 'rt', encoding="utf-8").readlines() # UTF-8 byte length tgt_lines = open(tgt_file, 'rt', encoding="utf-8").readlines() src_len = calculate_txt_len(src_lines) tgt_len = calculate_txt_len(tgt_lines) m = src_len.shape[0] - 1 n = tgt_len.shape[0] - 1 # find search path w, search_path = \ find_search_path(m, n, min_win_size, max_win_size, win_per_100) cost, back = align(src_len, tgt_len, w, search_path, align_types, priors, c, s2) alignment = back_track(m, n, back, search_path, align_types) #print(alignment) # save alignment f = open(align_file, 'w', encoding="utf-8") print_alignments(alignment, file=f) def print_alignments(alignments, file=sys.stdout): for x, y in alignments: print('%s:%s' % (x, y), file=file) def back_track(i, j, b, search_path, a_types): #i = b.shape[0] - 1 #j = b.shape[1] - 1 alignment = [] while ( i !=0 and j != 0 ): j_offset = j - search_path[i][0] a = b[i][j_offset] s = a_types[a][0] t = a_types[a][1] src_range = [i - offset - 1 for offset in range(s)][::-1] tgt_range = [j - offset - 1 for offset in range(t)][::-1] alignment.append((src_range, tgt_range)) i = i-s j = j-t return alignment[::-1] @nb.jit(nopython=True, fastmath=True, cache=True) def align(src_len, tgt_len, w, search_path, align_types, priors, c, s2): #initialize cost and backpointer matrix m = src_len.shape[0] - 1 cost = np.zeros((m + 1, 2 * w + 1)) back = np.zeros((m + 1, 2 * w + 1), dtype=nb.int64) cost[0][0] = 0 back[0][0] = -1 for i in range(m + 1): i_start = search_path[i][0] i_end = search_path[i][1] for j in range(i_start, i_end + 1): if i + j == 0: continue best_score = np.inf best_a = -1 for a in range(align_types.shape[0]): a_1 = align_types[a][0] a_2 = align_types[a][1] prev_i = i - a_1 prev_j = j - a_2 if prev_i < 0 or prev_j < 0 : # no previous cell continue prev_i_start = search_path[prev_i][0] prev_i_end = search_path[prev_i][1] if prev_j < prev_i_start or prev_j > prev_i_end: # out of bound of cost matrix continue prev_j_offset = prev_j - prev_i_start score = cost[prev_i][prev_j_offset] - math.log(priors[a_1 + a_2]) + \ get_score(src_len[i] - src_len[i - a_1], tgt_len[j] - tgt_len[j - a_2], c, s2) if score < best_score: best_score = score best_a = a j_offset = j - i_start cost[i][j_offset] = best_score back[i][j_offset] = best_a return cost, back @nb.jit(nopython=True, fastmath=True, cache=True) def get_score(len_s, len_t, c, s2): mean = (len_s + len_t / c) / 2 z = (len_t - len_s * c) / math.sqrt(mean * s2) pd = 2 * (1 - norm_cdf(abs(z))) if pd > 0: return -math.log(pd) return 25 @nb.jit(nopython=True, fastmath=True, cache=True) def find_search_path(src_len, tgt_len, min_win_size, max_win_size, win_per_100): yx_ratio = tgt_len / src_len win_size_1 = int(yx_ratio * tgt_len * win_per_100 / 100) win_size_2 = int(abs(tgt_len - src_len) * 3/4) w_1 = min(max(min_win_size, max(win_size_1, win_size_2)), max_win_size) #w_2 = int(max(src_len, tgt_len) * 0.05) w_2 = int(max(src_len, tgt_len) * 0.06) w = max(w_1, w_2) search_path = np.zeros((src_len + 1, 2), dtype=nb.int64) for i in range(0, src_len + 1): center = int(yx_ratio * i) w_start = max(0, center - w) w_end = min(center + w, tgt_len) search_path[i] = [w_start, w_end] return w, search_path @nb.jit(nopython=True, fastmath=True, cache=True) def norm_cdf(z): t = 1/float(1+0.2316419*z) # t = 1/(1+pz) , z=0.2316419 p_norm = 1 - 0.3989423*math.exp(-z*z/2) * ((0.319381530 * t)+ \ (-0.356563782 * t)+ \ (1.781477937 * t) + \ (-1.821255978* t) + \ (1.330274429 * t)) return p_norm def calculate_txt_len(lines): txt_len = [] txt_len.append(0) for i, line in enumerate(lines): txt_len.append(txt_len[i] + len(line.strip().encode("utf-8"))) return np.array(txt_len) def read_job(file): job = [] with open(file, 'r', encoding="utf-8") as f: for line in f: if not line.startswith("#"): job.append(line.strip()) return job if __name__ == '__main__': t_0 = time.time() _main() print("It takes {}".format(time.time() - t_0))