572 lines
20 KiB
Python
572 lines
20 KiB
Python
# 2021/11/29
|
|
# bfsujason@163.com
|
|
|
|
"""
|
|
Usage:
|
|
|
|
python bin/bert_align.py \
|
|
-s data/mac/dev/zh \
|
|
-t data/mac/dev/en \
|
|
-o data/mac/dev/auto \
|
|
-m data/mac/dev/meta_data.tsv \
|
|
--src_embed data/mac/dev/zh/overlap data/mac/dev/zh/overlap.emb \
|
|
--tgt_embed data/mac/dev/en/overlap data/mac/dev/en/overlap.emb \
|
|
--max_align 8 --margin
|
|
"""
|
|
|
|
import os
|
|
import time
|
|
import torch
|
|
import faiss
|
|
import shutil
|
|
import argparse
|
|
import numpy as np
|
|
import numba as nb
|
|
|
|
def main():
|
|
# user-defined parameters
|
|
parser = argparse.ArgumentParser('Sentence alignment using Bertalign')
|
|
parser.add_argument('-s', '--src', type=str, required=True, help='Source texts directory.')
|
|
parser.add_argument('-t', '--tgt', type=str, required=True, help='Target texts directory.')
|
|
parser.add_argument('-o', '--out', type=str, required=True, help='Alignment directory.')
|
|
parser.add_argument('-m', '--meta', type=str, required=True, help='Metadata file path.')
|
|
parser.add_argument('--src_embed', type=str, nargs=2, required=True,
|
|
help='Source overlapping and embedding file paths.')
|
|
parser.add_argument('--tgt_embed', type=str, nargs=2, required=True,
|
|
help='Target overlapping and embedding file paths.')
|
|
parser.add_argument('--max_align', type=int, default=5,
|
|
help='Maximum number of source+target sentences allowed in each alignment segment.')
|
|
parser.add_argument('--win', type=int, default=5, help='Window size for the second-pass alignment.')
|
|
parser.add_argument('--top_k', type=int, default=3, help='Top-k target neighbors of each source sentence.')
|
|
parser.add_argument('--skip', type=float, default=-0.1, help='Similarity score for 0-1 and 1-0 alignment.')
|
|
parser.add_argument('--margin', action='store_true', help='Margin-based modified cosine similarity.')
|
|
args = parser.parse_args()
|
|
|
|
# Read in source and target embeddings.
|
|
src_sent2line, src_line_embeddings = \
|
|
read_in_embeddings(args.src_embed[0], args.src_embed[1])
|
|
tgt_sent2line, tgt_line_embeddings = \
|
|
read_in_embeddings(args.tgt_embed[0], args.tgt_embed[1])
|
|
|
|
# Perform stentence alignment.
|
|
make_dir(args.out)
|
|
jobs = create_jobs(args.meta, args.src, args.tgt, args.out)
|
|
for job in jobs:
|
|
src_file, tgt_file, out_file = job.split('\t')
|
|
print("Aligning {} to {}".format(src_file, tgt_file))
|
|
|
|
# Convert source and target texts into feature matrix.
|
|
t_0 = time.time()
|
|
src_lines = open(src_file, 'rt', encoding="utf-8").readlines()
|
|
tgt_lines = open(tgt_file, 'rt', encoding="utf-8").readlines()
|
|
src_vecs, src_lens = \
|
|
doc2feats(src_sent2line, src_line_embeddings, src_lines, args.max_align - 1)
|
|
tgt_vecs, tgt_lens = \
|
|
doc2feats(tgt_sent2line, tgt_line_embeddings, tgt_lines, args.max_align - 1)
|
|
char_ratio = np.sum(src_lens[0,]) / np.sum(tgt_lens[0,])
|
|
print("Vectorizing soure and target texts takes {:.3f} seconds.".format(time.time() - t_0))
|
|
|
|
# Find the top_k similar target sentences for each source sentence.
|
|
t_1 = time.time()
|
|
D, I = find_top_k_sents(src_vecs[0,:], tgt_vecs[0,:], k=args.top_k)
|
|
print("Finding top-k sentences takes {:.3f} seconds.".format(time.time() - t_1))
|
|
|
|
# Find optimal 1-1 alignments using dynamic programming.
|
|
t_2 = time.time()
|
|
m = len(src_lines)
|
|
n = len(tgt_lines)
|
|
first_alignment_types = get_alignment_types(2) # 0-1, 1-0, 1-1
|
|
first_w, first_path = find_first_search_path(m, n)
|
|
first_pointers = first_pass_align(m, n, first_w,
|
|
first_path, first_alignment_types,
|
|
D, I, args.top_k)
|
|
first_alignment = first_back_track(m, n,
|
|
first_pointers, first_path,
|
|
first_alignment_types)
|
|
print("First-pass alignment takes {:.3f} seconds.".format(time.time() - t_2))
|
|
|
|
# Find optimal m-to-n alignments using dynamic programming.
|
|
t_3 = time.time()
|
|
second_alignment_types = get_alignment_types(args.max_align)
|
|
second_w, second_path = find_second_path(first_alignment, args.win, m, n)
|
|
second_pointers = second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens,
|
|
second_w, second_path, second_alignment_types,
|
|
char_ratio, args.skip, margin=args.margin)
|
|
second_alignment = second_back_track(m, n, second_pointers,
|
|
second_path, second_alignment_types)
|
|
print("Second pass alignment takes {:.3f}".format(time.time() - t_3))
|
|
|
|
# save alignment results
|
|
print_alignments(second_alignment, out_file)
|
|
|
|
def print_alignments(alignments, out):
|
|
with open(out, 'wt', encoding='utf-8') as f:
|
|
for x, y in alignments:
|
|
f.write("{}:{}\n".format(x, y))
|
|
|
|
@nb.jit(nopython=True, fastmath=True, cache=True)
|
|
def second_pass_align(src_vecs,
|
|
tgt_vecs,
|
|
src_lens,
|
|
tgt_lens,
|
|
w,
|
|
search_path,
|
|
align_types,
|
|
char_ratio,
|
|
skip,
|
|
margin=False):
|
|
"""
|
|
Perform the second-pass alignment to extract n-m bitext segments.
|
|
Args:
|
|
src_vecs: numpy array of shape (max_align-1, num_src_sents, embedding_size).
|
|
tgt_vecs: numpy array of shape (max_align-1, num_tgt_sents, embedding_size)
|
|
src_lens: numpy array of shape (max_align-1, num_src_sents).
|
|
tgt_lens: numpy array of shape (max_align-1, num_tgt_sents).
|
|
w: int. Predefined window size for the second-pass alignment.
|
|
search_path: numpy array. Second-pass alignment search path.
|
|
align_types: numpy array. Second-pass alignment types.
|
|
char_ratio: float. Ratio between source length to target length.
|
|
skip: float. Cost for instertion and deletion.
|
|
margin: boolean. Set to true if choosing modified cosine similarity score.
|
|
Returns:
|
|
pointers: numpy array recording best alignments for each DP cell.
|
|
"""
|
|
src_len = src_vecs.shape[1]
|
|
tgt_len = tgt_vecs.shape[1]
|
|
|
|
# Intialize cost and backpointer matrix
|
|
cost = np.zeros((src_len + 1, w))
|
|
back = np.zeros((src_len + 1, w), dtype=nb.int64)
|
|
cost[0][0] = 0
|
|
back[0][0] = -1
|
|
|
|
for i in range(1, src_len + 1):
|
|
i_start = search_path[i][0]
|
|
i_end = search_path[i][1]
|
|
for j in range(i_start, i_end + 1):
|
|
if i + j == 0:
|
|
continue
|
|
best_score = -np.inf
|
|
best_a = -1
|
|
for a in range(align_types.shape[0]):
|
|
a_1 = align_types[a][0]
|
|
a_2 = align_types[a][1]
|
|
prev_i = i - a_1
|
|
prev_j = j - a_2
|
|
|
|
if prev_i < 0 or prev_j < 0 : # no previous cell in DP table
|
|
continue
|
|
prev_i_start = search_path[prev_i][0]
|
|
prev_i_end = search_path[prev_i][1]
|
|
if prev_j < prev_i_start or prev_j > prev_i_end: # out of bound of cost matrix
|
|
continue
|
|
prev_j_offset = prev_j - prev_i_start
|
|
score = cost[prev_i][prev_j_offset]
|
|
if score == -np.inf:
|
|
continue
|
|
|
|
if a_1 == 0 or a_2 == 0: # deletion or insertion
|
|
cur_score = skip
|
|
else:
|
|
src_v = src_vecs[a_1-1,i-1,:]
|
|
tgt_v = tgt_vecs[a_2-1,j-1,:]
|
|
src_l = src_lens[a_1-1, i-1]
|
|
tgt_l = tgt_lens[a_2-1, j-1]
|
|
cur_score = get_score(src_v, tgt_v,
|
|
a_1, a_2, i, j,
|
|
src_vecs, tgt_vecs,
|
|
src_len, tgt_len,
|
|
margin=margin)
|
|
tgt_l = tgt_l * char_ratio
|
|
min_len = min(src_l, tgt_l)
|
|
max_len = max(src_l, tgt_l)
|
|
len_p = np.log2(1 + min_len / max_len)
|
|
cur_score *= len_p
|
|
|
|
score += cur_score
|
|
if score > best_score:
|
|
best_score = score
|
|
best_a = a
|
|
|
|
j_offset = j - i_start
|
|
cost[i][j_offset] = best_score
|
|
back[i][j_offset] = best_a
|
|
|
|
return back
|
|
|
|
def second_back_track(i, j, b, search_path, a_types):
|
|
alignment = []
|
|
while ( i !=0 and j != 0 ):
|
|
j_offset = j - search_path[i][0]
|
|
a = b[i][j_offset]
|
|
s = a_types[a][0]
|
|
t = a_types[a][1]
|
|
src_range = [i - offset - 1 for offset in range(s)][::-1]
|
|
tgt_range = [j - offset - 1 for offset in range(t)][::-1]
|
|
alignment.append((src_range, tgt_range))
|
|
|
|
i = i-s
|
|
j = j-t
|
|
|
|
return alignment[::-1]
|
|
|
|
@nb.jit(nopython=True, fastmath=True, cache=True)
|
|
def get_score(src_v, tgt_v,
|
|
a_1, a_2,
|
|
i, j,
|
|
src_vecs, tgt_vecs,
|
|
src_len, tgt_len,
|
|
margin=False):
|
|
similarity = nb_dot(src_v, tgt_v)
|
|
if margin:
|
|
tgt_neighbor_ave_sim = get_neighbor_sim(src_v, a_2, j, tgt_len, tgt_vecs)
|
|
src_neighbor_ave_sim = get_neighbor_sim(tgt_v, a_1, i, src_len, src_vecs)
|
|
neighbor_ave_sim = (tgt_neighbor_ave_sim + src_neighbor_ave_sim)/2
|
|
similarity -= neighbor_ave_sim
|
|
|
|
return similarity
|
|
|
|
@nb.jit(nopython=True, fastmath=True, cache=True)
|
|
def get_neighbor_sim(vec, a, j, len, db):
|
|
left_idx = j - a
|
|
right_idx = j + 1
|
|
|
|
if right_idx > len:
|
|
neighbor_right_sim = 0
|
|
else:
|
|
right_embed = db[0,right_idx-1,:]
|
|
neighbor_right_sim = nb_dot(vec, right_embed)
|
|
|
|
if left_idx == 0:
|
|
neighbor_left_sim = 0
|
|
else:
|
|
left_embed = db[0,left_idx-1,:]
|
|
neighbor_left_sim = nb_dot(vec, left_embed)
|
|
|
|
#if right_idx > LEN or left_idx < 0:
|
|
if right_idx > len or left_idx == 0:
|
|
neighbor_ave_sim = neighbor_left_sim + neighbor_right_sim
|
|
else:
|
|
neighbor_ave_sim = (neighbor_left_sim + neighbor_right_sim) / 2
|
|
|
|
return neighbor_ave_sim
|
|
|
|
@nb.jit(nopython=True, fastmath=True, cache=True)
|
|
def nb_dot(x, y):
|
|
return np.dot(x,y)
|
|
|
|
def find_second_path(align, w, src_len, tgt_len):
|
|
'''
|
|
Convert 1-1 alignment from first-pass to the path for second-pass alignment.
|
|
The indices along X-axis and Y-axis must be consecutive.
|
|
Args:
|
|
align: list of tuples. First-pass alignment results.
|
|
w: int. Predefined window size for the second path.
|
|
src_len: int. Number of source sentences.
|
|
tgt_len: int. Number of target sentences.
|
|
Returns:
|
|
path: numpy array for the second search path.
|
|
'''
|
|
last_bead_src = align[-1][0]
|
|
last_bead_tgt = align[-1][1]
|
|
|
|
if last_bead_src != src_len:
|
|
if last_bead_tgt == tgt_len:
|
|
align.pop()
|
|
align.append((src_len, tgt_len))
|
|
else:
|
|
if last_bead_tgt != tgt_len:
|
|
align.pop()
|
|
align.append((src_len, tgt_len))
|
|
|
|
prev_src, prev_tgt = 0, 0
|
|
path = []
|
|
max_w = -np.inf
|
|
for src, tgt in align:
|
|
lower_bound = max(0, prev_tgt - w)
|
|
upper_bound = min(tgt_len, tgt + w)
|
|
path.extend([(lower_bound, upper_bound) for id in range(prev_src+1, src+1)])
|
|
prev_src, prev_tgt = src, tgt
|
|
width = upper_bound - lower_bound
|
|
if width > max_w:
|
|
max_w = width
|
|
path = [path[0]] + path
|
|
|
|
return max_w + 1, np.array(path)
|
|
|
|
def first_back_track(i, j, b, search_path, a_types):
|
|
"""
|
|
Retrieve 1-1 alignments from the first-pass DP table.
|
|
Args:
|
|
i: int. Number of source sentences.
|
|
j: int. Number of target sentences.
|
|
search_path: numpy array. First-pass search path.
|
|
a_types: numpy array. First-pass alignment types.
|
|
Returns:
|
|
alignment: list of tuples for 1-1 alignments.
|
|
"""
|
|
alignment = []
|
|
while ( i !=0 and j != 0 ):
|
|
j_offset = j - search_path[i][0]
|
|
a = b[i][j_offset]
|
|
s = a_types[a][0]
|
|
t = a_types[a][1]
|
|
if a == 2: # best 1-1 alignment
|
|
alignment.append((i, j))
|
|
|
|
i = i-s
|
|
j = j-t
|
|
|
|
return alignment[::-1]
|
|
|
|
@nb.jit(nopython=True, fastmath=True, cache=True)
|
|
def first_pass_align(src_len,
|
|
tgt_len,
|
|
w,
|
|
search_path,
|
|
align_types,
|
|
dist,
|
|
index,
|
|
top_k):
|
|
"""
|
|
Perform the first-pass alignment to extract 1-1 bitext segments.
|
|
Args:
|
|
src_len: int. Number of source sentences.
|
|
tgt_len: int. Number of target sentences.
|
|
w: int. Window size for the first-pass alignment.
|
|
search_path: numpy array. Search path for the first-pass alignment.
|
|
align_types: numpy array. Alignment types for the first-pass alignment.
|
|
dist: numpy array. Distance matrix for top-k similar vecs.
|
|
index: numpy array. Index matrix for top-k similar vecs.
|
|
top_k: int. Number of most similar top-k vecs.
|
|
Returns:
|
|
pointers: numpy array recording best alignments for each DP cell.
|
|
"""
|
|
# Initialize cost and backpointer matrix.
|
|
cost = np.zeros((src_len + 1, 2 * w + 1))
|
|
pointers = np.zeros((src_len + 1, 2 * w + 1), dtype=nb.int64)
|
|
cost[0][0] = 0
|
|
pointers[0][0] = -1
|
|
|
|
for i in range(1, src_len + 1):
|
|
i_start = search_path[i][0]
|
|
i_end = search_path[i][1]
|
|
for j in range(i_start, i_end + 1):
|
|
if i + j == 0:
|
|
continue
|
|
best_score = -np.inf
|
|
best_a = -1
|
|
for a in range(align_types.shape[0]):
|
|
a_1 = align_types[a][0]
|
|
a_2 = align_types[a][1]
|
|
prev_i = i - a_1
|
|
prev_j = j - a_2
|
|
if prev_i < 0 or prev_j < 0 : # no previous cell
|
|
continue
|
|
prev_i_start = search_path[prev_i][0]
|
|
prev_i_end = search_path[prev_i][1]
|
|
if prev_j < prev_i_start or prev_j > prev_i_end: # out of bound of cost matrix
|
|
continue
|
|
prev_j_offset = prev_j - prev_i_start
|
|
score = cost[prev_i][prev_j_offset]
|
|
if score == -np.inf:
|
|
continue
|
|
|
|
if a_1 > 0 and a_2 > 0:
|
|
for k in range(top_k):
|
|
if index[i-1][k] == j - 1:
|
|
score += dist[i-1][k]
|
|
if score > best_score:
|
|
best_score = score
|
|
best_a = a
|
|
|
|
j_offset = j - i_start
|
|
cost[i][j_offset] = best_score
|
|
pointers[i][j_offset] = best_a
|
|
|
|
return pointers
|
|
|
|
def find_first_search_path(src_len,
|
|
tgt_len,
|
|
min_win_size = 250,
|
|
percent=0.06):
|
|
"""
|
|
Find the window size and search path for the first-pass alignment.
|
|
Args:
|
|
src_len: int. Number of source sentences.
|
|
tgt_len: int. Number of target sentences.
|
|
min_win_size: int. Minimum window size.
|
|
percent. float. Percent of longer sentences.
|
|
Returns:
|
|
win_size: int. Window size along the diagonal of the DP table.
|
|
search_path: numpy array of shape (src_len + 1, 2), containing the start
|
|
and end index of target sentences for each source sentence.
|
|
One extra row is added in the search_path for calculation of
|
|
deletions and omissions.
|
|
"""
|
|
win_size = max(min_win_size, int(max(src_len, tgt_len) * percent))
|
|
search_path = []
|
|
yx_ratio = tgt_len / src_len
|
|
for i in range(0, src_len + 1):
|
|
center = int(yx_ratio * i)
|
|
win_start = max(0, center - win_size)
|
|
win_end = min(center + win_size, tgt_len)
|
|
search_path.append([win_start, win_end])
|
|
return win_size, np.array(search_path)
|
|
|
|
def get_alignment_types(max_alignment_size):
|
|
"""
|
|
Get all the possible alignment types.
|
|
Args:
|
|
max_alignment_size: int. Source sentences number +
|
|
Target sentences number <= this value.
|
|
Returns:
|
|
alignment_types: numpy array.
|
|
"""
|
|
alignment_types = [[0,1], [1,0]]
|
|
for x in range(1, max_alignment_size):
|
|
for y in range(1, max_alignment_size):
|
|
if x + y <= max_alignment_size:
|
|
alignment_types.append([x, y])
|
|
return np.array(alignment_types)
|
|
|
|
def find_top_k_sents(src_vecs, tgt_vecs, k=3):
|
|
"""
|
|
Find the top_k similar vecs in tgt_vecs for each vec in src_vecs.
|
|
Args:
|
|
src_vecs: numpy array of shape (num_src_sents, embedding_size)
|
|
tgt_vecs: numpy array of shape (num_tgt_sents, embedding_size)
|
|
k: int. Number of most similar target sentences.
|
|
Returns:
|
|
D: numpy array. Similarity score matrix of shape (num_src_sents, k).
|
|
I: numpy array. Target index matrix of shape (num_src_sents, k).
|
|
"""
|
|
embedding_size = src_vecs.shape[1]
|
|
if torch.cuda.is_available(): # GPU version
|
|
res = faiss.StandardGpuResources()
|
|
index = faiss.IndexFlatIP(embedding_size)
|
|
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
|
|
gpu_index.add(tgt_vecs)
|
|
D, I = gpu_index.search(src_vecs, k)
|
|
else: # CPU version
|
|
index = faiss.IndexFlatIP(embedding_size)
|
|
index.add(tgt_vecs)
|
|
D, I = index.search(src_vecs, k)
|
|
return D, I
|
|
|
|
def doc2feats(sent2line, line_embeddings, lines, num_overlaps):
|
|
"""
|
|
Convert texts into feature matrix.
|
|
Args:
|
|
sent2line: dict. Map each sentence to its ID.
|
|
line_embeddings: numpy array of sentence embeddings.
|
|
lines: list of sentences.
|
|
num_overlaps: int. Maximum number of overlapping sentences allowed.
|
|
Returns:
|
|
vecs0: numpy array of shape (num_overlaps, num_lines, size_embedding)
|
|
for overlapping sentence embeddings.
|
|
vecs1: numpy array of shape (num_overlap, num_lines)
|
|
for overlapping sentence lengths.
|
|
"""
|
|
lines = [preprocess_line(line) for line in lines]
|
|
vecsize = line_embeddings.shape[1]
|
|
vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32)
|
|
vecs1 = np.empty((num_overlaps, len(lines)), dtype=np.int)
|
|
for ii, overlap in enumerate(range(1, num_overlaps + 1)):
|
|
for jj, out_line in enumerate(layer(lines, overlap)):
|
|
try:
|
|
line_id = sent2line[out_line]
|
|
except KeyError:
|
|
logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line)
|
|
line_id = None
|
|
if line_id is not None:
|
|
vec = line_embeddings[line_id]
|
|
else:
|
|
vec = np.random.random(vecsize) - 0.5
|
|
vec = vec / np.linalg.norm(vec)
|
|
vecs0[ii, jj, :] = vec
|
|
vecs1[ii, jj] = len(out_line.encode("utf-8"))
|
|
return vecs0, vecs1
|
|
|
|
def layer(lines, num_overlaps, comb=' '):
|
|
"""
|
|
Make front-padded overlapping sentences.
|
|
"""
|
|
if num_overlaps < 1:
|
|
raise Exception('num_overlaps must be >= 1')
|
|
out = ['PAD', ] * min(num_overlaps - 1, len(lines))
|
|
for ii in range(len(lines) - num_overlaps + 1):
|
|
out.append(comb.join(lines[ii:ii + num_overlaps]))
|
|
return out
|
|
|
|
def preprocess_line(line):
|
|
"""
|
|
Clean each line of the text.
|
|
"""
|
|
line = line.strip()
|
|
if len(line) == 0:
|
|
line = 'BLANK_LINE'
|
|
return line
|
|
|
|
def read_in_embeddings(text_file, embed_file):
|
|
"""
|
|
Read in the overlap lines and line embeddings.
|
|
Args:
|
|
text_file: str. Overlap file path.
|
|
embed_file: str. Embedding file path.
|
|
Returns:
|
|
sent2line: dict. Map overlap sentences to line IDs.
|
|
line_embeddings: numpy array of the shape (num_lines, embedding_size).
|
|
For sentence-transformers, the embedding_size is 768.
|
|
"""
|
|
sent2line = dict()
|
|
with open(text_file, 'rt', encoding="utf-8") as f:
|
|
for i, line in enumerate(f):
|
|
sent2line[line.strip()] = i
|
|
line_embeddings = np.fromfile(embed_file, dtype=np.float32)
|
|
embedding_size = line_embeddings.size // len(sent2line)
|
|
line_embeddings.resize(line_embeddings.shape[0] // embedding_size, embedding_size)
|
|
return sent2line, line_embeddings
|
|
|
|
def create_jobs(meta_data_file, src_dir, tgt_dir, alignment_dir):
|
|
"""
|
|
Creat a job list consisting of source, target and alignment file paths.
|
|
"""
|
|
jobs = []
|
|
text_ids = get_text_ids(meta_data_file)
|
|
for id in text_ids:
|
|
src_path = os.path.abspath(os.path.join(src_dir, id))
|
|
tgt_path = os.path.abspath(os.path.join(tgt_dir, id))
|
|
out_path = os.path.abspath(os.path.join(alignment_dir, id + '.align'))
|
|
jobs.append('\t'.join([src_path, tgt_path, out_path]))
|
|
return jobs
|
|
|
|
def get_text_ids(meta_data_file):
|
|
"""
|
|
Get the text IDs to be aligned.
|
|
Args:
|
|
meta_data_file: str. TSV file with the first column being text ID.
|
|
Returns:
|
|
text_ids: list.
|
|
"""
|
|
text_ids = []
|
|
with open(meta_data_file, 'rt', encoding='utf-8') as f:
|
|
next(f) # skip header
|
|
for line in f:
|
|
recs = line.strip().split('\t')
|
|
text_ids.append(recs[0])
|
|
return text_ids
|
|
|
|
def make_dir(auto_alignment_path):
|
|
"""
|
|
Make an empty diretory for saving automatic alignment results.
|
|
"""
|
|
if os.path.isdir(auto_alignment_path):
|
|
shutil.rmtree(auto_alignment_path)
|
|
os.makedirs(auto_alignment_path, exist_ok=True)
|
|
|
|
if __name__ == '__main__':
|
|
t_0 = time.time()
|
|
main()
|
|
print("It takes {:.3f} seconds to align all the sentences.".format(time.time() - t_0))
|