chore: onewire

This commit is contained in:
2024-11-11 01:31:19 +06:00
parent 39f7755477
commit 8fe50deeed
16 changed files with 1180 additions and 66 deletions

View File

@@ -25,6 +25,7 @@
"system_init.h": "c", "system_init.h": "c",
"mqtt_handler.h": "c", "mqtt_handler.h": "c",
"cstdlib": "c", "cstdlib": "c",
"modbus_master.h": "c" "modbus_master.h": "c",
"ch32v003_gpio_branchless.h": "c"
} }
} }

View File

@@ -30,12 +30,6 @@ typedef struct {
const char* name; // Device name (used in MQTT topics) const char* name; // Device name (used in MQTT topics)
} rs485_device_t; } rs485_device_t;
// OneWire naming scheme configuration
typedef struct {
const char* location; // Location prefix for the sensor
const char* name_prefix; // Prefix for auto-generated names
} onewire_naming_t;
// Network Configuration // Network Configuration
#define MQTT_SERVER_IP {192, 168, 102, 100} #define MQTT_SERVER_IP {192, 168, 102, 100}
#define MQTT_PORT 1883 #define MQTT_PORT 1883
@@ -51,26 +45,10 @@ static const node_config_t NODE_CONFIG = {
.id = "ch32-node1", .name = "CH32 Node 1", .location = "somewhere"}; .id = "ch32-node1", .name = "CH32 Node 1", .location = "somewhere"};
// RS485 Devices Configuration // RS485 Devices Configuration
#define RS485_DEVICE_COUNT 2 #define RS485_DEVICE_COUNT 1
static const rs485_device_t RS485_DEVICES[RS485_DEVICE_COUNT] = { static const rs485_device_t RS485_DEVICES[RS485_DEVICE_COUNT] = {
{.slave_id = 0x01, .type = DEVICE_RELAY, .name = "relay-1"}, {.slave_id = 0x01, .type = DEVICE_RELAY, .name = "relay-1"}};
{.slave_id = 0x02, .type = DEVICE_SOIL_SENSOR, .name = "soil-monitor-1"}}; // {.slave_id = 0x02, .type = DEVICE_SOIL_SENSOR, .name = "soil-monitor-1"}};
// OneWire Naming Configuration
#define MAX_ONEWIRE_DEVICES 8
static const onewire_naming_t ONEWIRE_NAMING[] = {
{.location = "tank", .name_prefix = "water-temp"},
{.location = "ambient", .name_prefix = "air-temp"},
{.location = "soil", .name_prefix = "soil-temp"}};
// Structure to store discovered OneWire devices
typedef struct {
uint8_t address[8]; // OneWire address
uint8_t location_index; // Index into ONEWIRE_NAMING array
char name[32]; // Generated name (e.g., "tank-water-temp-1")
uint8_t sequence; // Sequence number within its location
} onewire_device_t;
#endif // CONFIG_H #endif // CONFIG_H

View File

@@ -11,7 +11,7 @@ typedef void (*modbus_value_cb)(uint8_t device_idx, const char* property,
void modbus_handler_init(modbus_context_t* ctx, modbus_value_cb value_callback); void modbus_handler_init(modbus_context_t* ctx, modbus_value_cb value_callback);
void modbus_handler_process(void); void modbus_handler_process(void);
uint8_t modbus_handler_send_request(uint8_t device_idx, const char* property, bool modbus_handler_send_request(uint8_t device_idx, const char* property,
uint8_t is_write, uint16_t value); uint8_t is_write, uint16_t value);
#endif #endif

View File

@@ -2,6 +2,7 @@
#define __MODBUS_MASTER_H #define __MODBUS_MASTER_H
#include <stdint.h> #include <stdint.h>
#include <stdbool.h>
// Function codes // Function codes
#define MODBUS_FC_READ_HOLDING_REGISTERS 0x03 #define MODBUS_FC_READ_HOLDING_REGISTERS 0x03
@@ -51,6 +52,6 @@ void modbus_init(modbus_context_t* ctx,
void (*error_callback)(uint8_t)); void (*error_callback)(uint8_t));
void modbus_set_timeout(modbus_context_t* ctx, uint32_t timeout_ms); void modbus_set_timeout(modbus_context_t* ctx, uint32_t timeout_ms);
void modbus_process(modbus_context_t* ctx); void modbus_process(modbus_context_t* ctx);
uint8_t modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr, bool modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr,
uint8_t function, uint16_t address, uint16_t value); uint8_t function, uint16_t address, uint16_t value);
#endif // __MODBUS_MASTER_H #endif // __MODBUS_MASTER_H

View File

@@ -2,10 +2,13 @@
#define MQTT_HANDLER_H #define MQTT_HANDLER_H
#include <DHCP/dhcp.h> #include <DHCP/dhcp.h>
#include <stdbool.h>
#include "ch32v003fun.h" #include "ch32v003fun.h"
#include "w5500.h" #include "w5500.h"
#define MAX_PAYLOAD_LENGTH 256
// Options structure for client identification // Options structure for client identification
typedef struct { typedef struct {
char* clientid; char* clientid;
@@ -20,14 +23,20 @@ typedef struct {
ch32_mqtt_options_t opts; ch32_mqtt_options_t opts;
uint32_t last_reconnect; uint32_t last_reconnect;
uint32_t last_yield; uint32_t last_yield;
uint8_t is_connected; bool is_connected;
char base_topic[64]; char base_topic[64];
} mqtt_state_t; } mqtt_state_t;
extern char nodes_list[MAX_PAYLOAD_LENGTH];
void mqtt_init(mqtt_state_t* state); void mqtt_init(mqtt_state_t* state);
void mqtt_process(mqtt_state_t* state); void mqtt_process(mqtt_state_t* state);
void message_arrived(MessageData* md); void message_arrived(MessageData* md);
void publish_value(MQTTClient* client, const char* device_name, void publish_value(MQTTClient* client, const char* device_name,
const char* property, uint16_t value); const char* property, uint16_t value);
void publish_retained(MQTTClient* client, const char* topic,
const char* payload);
void publish_message(MQTTClient* client, const char* payload,
const char* topic);
#endif #endif

46
include/onewire_temp.h Normal file
View File

@@ -0,0 +1,46 @@
#ifndef ONEWIRE_TEMP_H
#define ONEWIRE_TEMP_H
#include <stdbool.h>
#include <stdint.h>
#include "mqtt_handler.h"
#define ONEWIRE_MAX_SENSORS 16
#define ONEWIRE_TEMP_INVALID -999.0f
typedef enum {
ONEWIRE_STATE_READY,
ONEWIRE_STATE_CONVERTING,
ONEWIRE_STATE_READ
} onewire_state_t;
// Initialize OneWire temperature system
void onewire_temp_init(void);
// Process all sensors (call regularly)
void onewire_temp_process(void);
// Start parallel conversion on all sensors
void onewire_temp_start_parallel(void);
// Set parallel conversion mode
void onewire_temp_set_parallel(bool enable);
// Get temperature for sensor index
float onewire_temp_get(uint8_t index);
// Get total number of discovered sensors
uint8_t onewire_temp_count(void);
// Get sensor address
const uint8_t* onewire_temp_address(uint8_t index);
// Check if sensor is valid
bool onewire_temp_valid(uint8_t index);
// MQTT
void onewire_temp_publish_discovery(MQTTClient* client, const char* node_id);
void onewire_temp_publish_values(MQTTClient* client, const char* node_id);
#endif // ONEWIRE_TEMP_H

View File

@@ -1,9 +1,11 @@
#ifndef SYSTEM_INIT_H #ifndef SYSTEM_INIT_H
#define SYSTEM_INIT_H #define SYSTEM_INIT_H
#include <stdbool.h>
#define W5500_INIT_DELAY_MS 55 #define W5500_INIT_DELAY_MS 55
void init_system(void); void init_system(void);
int wait_for_dhcp(void); bool wait_for_dhcp(void);
#endif #endif

619
lib/onewire/onewire.c Normal file
View File

@@ -0,0 +1,619 @@
/*
Single-File One Wire Communication Functions for CH32V003
Relies on the CH32V003fun library from:
https://github.com/cnlohr/ch32v003fun
This is very heavily derived from the Arduino OneWire library,
at https://github.com/PaulStoffregen/OneWire
Original copyright notices follow:
--------------------------------------------
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010.
DO NOT EMAIL for technical support, especially not for ESP chips!
All project support questions must be posted on public forums
relevant to the board or chips used. If using Arduino, post on
Arduino's forum. If using ESP, post on the ESP community forums.
There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
Github's issue tracker for OneWire should be used only to report
specific bugs. DO NOT request project support via Github. All
project and tech support questions must be posted on forums, not
github issues. If you experience a problem and you are not
absolutely sure it's an issue with the library, ask on a forum
first. Only use github to report issues after experts have
confirmed the issue is with OneWire rather than your project.
Back in 2010, OneWire was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul (this is pretty much the only reason to use
private email about OneWire).
OneWire is now very mature code. No changes other than adding
definitions for newer hardware support are anticipated.
ESP32 mods authored by stickbreaker:
@stickbreaker 30APR2018 add IRAM_ATTR to read_bit() OneWireWriteBit() to solve
ICache miss timing failure. thanks @everslick re:
https://github.com/espressif/arduino-esp32/issues/1335 Altered by garyd9 for
clean merge with Paul Stoffregen's source
Version 2.3:
Unknown chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "onewire.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "ch32v003fun.h"
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
bool LastDeviceFlag;
void OneWireBegin(void);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t OneWireReset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void OneWireSelect(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
// void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void OneWireWrite(uint8_t v, uint8_t power);
void OneWireWriteBytes(const uint8_t *buf, uint16_t count, bool power);
// Read a byte.
uint8_t OneWireRead(void);
void OneWireReadBytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void OneWireWriteBit(uint8_t v);
// Read a bit.
uint8_t OneWireReadBit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void OneWireDepower(void);
// Clear the search state so that if will start from the beginning again.
void OneWireResetSearch();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void OneWireTargetSearch(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
bool OneWireSearch(uint8_t *newAddr, bool search_mode);
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
uint8_t OneWireCrc8(const uint8_t *addr, uint8_t len);
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
bool OneWireCheckCrc16(const uint8_t *input, uint16_t len,
const uint8_t *inverted_crc, uint16_t crc);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
uint16_t OneWireCrc16(const uint8_t *input, uint16_t len, uint16_t crc);
void OneWireBegin() {
directModeInput();
OneWireResetSearch();
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWireReset(void) {
uint8_t r;
uint8_t retries = 125;
DIRECT_MODE_INPUT();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
Delay_Us(2);
} while (!DIRECT_READ());
DIRECT_WRITE_LOW();
DIRECT_MODE_OUTPUT(); // drive output low
Delay_Us(480);
DIRECT_MODE_INPUT(); // allow it to float
Delay_Us(70);
r = !DIRECT_READ();
Delay_Us(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWireWriteBit(uint8_t v) {
if (v & 1) {
DIRECT_WRITE_LOW();
DIRECT_MODE_OUTPUT(); // drive output low
Delay_Us(10);
DIRECT_WRITE_HIGH(); // drive output high
Delay_Us(55);
} else {
DIRECT_WRITE_LOW();
DIRECT_MODE_OUTPUT(); // drive output low
Delay_Us(65);
DIRECT_WRITE_HIGH(); // drive output high
Delay_Us(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWireReadBit(void) {
uint8_t r;
DIRECT_MODE_OUTPUT();
DIRECT_WRITE_LOW();
Delay_Us(3);
DIRECT_MODE_INPUT(); // let pin float, pull up will raise
Delay_Us(10);
r = DIRECT_READ();
Delay_Us(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWireWrite(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWireWriteBit((bitMask & v) ? 1 : 0);
}
if (!power) {
DIRECT_MODE_INPUT();
DIRECT_WRITE_LOW();
}
}
void OneWireWriteBytes(const uint8_t *buf, uint16_t count, bool power) {
for (uint16_t i = 0; i < count; i++) OneWireWrite(buf[i], 0);
if (!power) {
DIRECT_MODE_INPUT();
DIRECT_WRITE_LOW();
}
}
//
// Read a byte
//
uint8_t OneWireRead() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if (OneWireReadBit()) r |= bitMask;
}
return r;
}
void OneWireReadBytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0; i < count; i++) buf[i] = OneWireRead();
}
//
// Do a ROM select
//
void OneWireSelect(const uint8_t rom[8]) {
uint8_t i;
OneWireWrite(0x55, 0); // Choose ROM
for (i = 0; i < 8; i++) OneWireWrite(rom[i], 0);
}
//
// Do a ROM skip
//
void OneWireSkip() {
OneWireWrite(0xCC, 0); // Skip ROM
}
void OneWireDepower() { DIRECT_MODE_INPUT(); }
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWireResetSearch() {
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
for (int i = 7;; i--) {
ROM_NO[i] = 0;
if (i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWireTargetSearch(uint8_t family_code) {
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++) ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = false;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWireAddress variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWireReset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
bool OneWireSearch(uint8_t *newAddr, bool search_mode /* = true */) {
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number;
bool search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = false;
// if the last call was not the last one
if (!LastDeviceFlag) {
// 1-Wire reset
if (!OneWireReset()) {
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
return false;
}
// issue the search command
if (search_mode == true) {
OneWireWrite(0xF0, 0); // NORMAL SEARCH
} else {
OneWireWrite(0xEC, 0); // CONDITIONAL SEARCH
}
// loop to do the search
do {
// read a bit and its complement
id_bit = OneWireReadBit();
cmp_id_bit = OneWireReadBit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)) {
break;
} else {
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit) {
search_direction = id_bit; // bit write value for search
} else {
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy) {
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
} else {
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
}
// if 0 was picked then record its position in LastZero
if (search_direction == 0) {
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9) LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
OneWireWriteBit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and
// reset mask
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
} while (rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0) {
LastDeviceFlag = true;
}
search_result = true;
}
}
// if no device found then reset counters so next 'search' will be like a
// first
if (!search_result || !ROM_NO[0]) {
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
search_result = false;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton
// Products"
//
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but a little smaller, than the lookup table.
//
uint8_t OneWireCrc8(const uint8_t *addr, uint8_t len) {
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
bool OneWireCheckCrc16(const uint8_t *input, uint16_t len,
const uint8_t *inverted_crc, uint16_t crc) {
crc = ~OneWireCrc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWireCrc16(const uint8_t *input, uint16_t len, uint16_t crc) {
static const uint8_t oddparity[16] = {0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0};
for (uint16_t i = 0; i < len; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}

98
lib/onewire/onewire.h Normal file
View File

@@ -0,0 +1,98 @@
#ifndef CH32V003_ONEWIRE_H
#define CH32V003_ONEWIRE_H
#include <stdbool.h>
#include <stdint.h>
#include "ch32v003fun.h"
// GPIO Direct Access Definitions
#ifndef OneWire_Direct_GPIO_h
#define OneWire_Direct_GPIO_h
static inline __attribute__((always_inline)) uint8_t directRead() {
return (GPIOB->INDR & (1 << 9)) ? 1 : 0;
}
static inline __attribute__((always_inline)) void directModeInput() {
GPIOB->CFGHR &= ~(0xF << (4 * (9 - 8)));
GPIOB->CFGHR |= (0x4 << (4 * (9 - 8)));
}
static inline __attribute__((always_inline)) void directModeOutput() {
GPIOB->CFGHR &= ~(0xF << (4 * (9 - 8)));
GPIOB->CFGHR |= (0x3 << (4 * (9 - 8)));
}
static inline __attribute__((always_inline)) void directWriteLow() {
GPIOB->BCR = (1 << 9);
}
static inline __attribute__((always_inline)) void directWriteHigh() {
GPIOB->BSHR = (1 << 9);
}
#define DIRECT_READ() directRead()
#define DIRECT_WRITE_LOW() directWriteLow()
#define DIRECT_WRITE_HIGH() directWriteHigh()
#define DIRECT_MODE_INPUT() directModeInput()
#define DIRECT_MODE_OUTPUT() directModeOutput()
#endif
// OneWire Function Declarations
// Initialize the OneWire bus
void OneWireBegin(void);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds with a presence
// pulse
uint8_t OneWireReset(void);
// Select a device on the bus using its ROM code
void OneWireSelect(const uint8_t rom[8]);
// Skip ROM selection - addresses all devices on the bus
void OneWireSkip(void);
// Write a byte to the bus. If 'power' is true, maintain strong pullup after
// write
void OneWireWrite(uint8_t v, uint8_t power);
// Write multiple bytes to the bus
void OneWireWriteBytes(const uint8_t *buf, uint16_t count, bool power);
// Read a byte from the bus
uint8_t OneWireRead(void);
// Read multiple bytes from the bus
void OneWireReadBytes(uint8_t *buf, uint16_t count);
// Write a single bit to the bus
void OneWireWriteBit(uint8_t v);
// Read a single bit from the bus
uint8_t OneWireReadBit(void);
// Stop forcing power onto the bus
void OneWireDepower(void);
// Reset the search state
void OneWireResetSearch(void);
// Setup search to find devices of a specific family code
void OneWireTargetSearch(uint8_t family_code);
// Search for the next device on the bus
bool OneWireSearch(uint8_t *newAddr, bool search_mode);
// Calculate 8-bit CRC
uint8_t OneWireCrc8(const uint8_t *addr, uint8_t len);
// Check if received CRC matches calculated CRC
bool OneWireCheckCrc16(const uint8_t *input, uint16_t len,
const uint8_t *inverted_crc, uint16_t crc);
// Calculate 16-bit CRC
uint16_t OneWireCrc16(const uint8_t *input, uint16_t len, uint16_t crc);
#endif // CH32V003_ONEWIRE_H

View File

@@ -1,10 +1,14 @@
#include <string.h>
#include "ch32v003fun.h" #include "ch32v003fun.h"
#include "config.h" #include "config.h"
#include "debug.h" #include "debug.h"
#include "dhcp.h" #include "dhcp.h"
#include "modbus_handler.h" #include "modbus_handler.h"
#include "mqtt_handler.h" #include "mqtt_handler.h"
#include "onewire_temp.h"
#include "system_init.h" #include "system_init.h"
#include "systick.h"
#include "w5500.h" #include "w5500.h"
static mqtt_state_t mqtt_state; static mqtt_state_t mqtt_state;
@@ -33,13 +37,38 @@ int main(void) {
} }
// init handlers // init handlers
// init sensors before mqtt so we can add them to discovery
onewire_temp_init();
onewire_temp_set_parallel(true);
mqtt_init(&mqtt_state); mqtt_init(&mqtt_state);
modbus_handler_init(&modbus_ctx, on_modbus_value); modbus_handler_init(&modbus_ctx, on_modbus_value);
uint32_t last_temp_publish = 0;
uint32_t last_temp_conversion = 0;
const uint32_t TEMP_PUBLISH_INTERVAL = 10000; // 10 seconds
const uint32_t CONVERSION_INTERVAL = 1000; // 1 second
while (1) { while (1) {
uint32_t current_time = millis();
dhcp_process(); dhcp_process();
mqtt_process(&mqtt_state); mqtt_process(&mqtt_state);
modbus_handler_process(); modbus_handler_process();
// TODO: doesn't make sense to convert every 1s, should be the same interval as publish
if (current_time - last_temp_conversion >= CONVERSION_INTERVAL) {
onewire_temp_start_parallel();
last_temp_conversion = current_time;
}
onewire_temp_process(); // Process all sensors
if (current_time - last_temp_publish >= TEMP_PUBLISH_INTERVAL) {
if (mqtt_state.is_connected) {
onewire_temp_publish_values(&mqtt_state.client, NODE_CONFIG.id);
}
last_temp_publish = current_time;
}
} }
return 0; return 0;

View File

@@ -55,15 +55,15 @@ static uint16_t get_register_address(device_type_t type, const char* property) {
return 0xFFFF; return 0xFFFF;
} }
uint8_t modbus_handler_send_request(uint8_t device_idx, const char* property, bool modbus_handler_send_request(uint8_t device_idx, const char* property,
uint8_t is_write, uint16_t value) { uint8_t is_write, uint16_t value) {
if (device_idx >= RS485_DEVICE_COUNT) { if (device_idx >= RS485_DEVICE_COUNT) {
return 0; return false;
} }
uint16_t reg = get_register_address(RS485_DEVICES[device_idx].type, property); uint16_t reg = get_register_address(RS485_DEVICES[device_idx].type, property);
if (reg == 0xFFFF) { if (reg == 0xFFFF) {
return 0; return false;
} }
uint8_t fc = is_write ? MODBUS_FC_WRITE_SINGLE_REGISTER uint8_t fc = is_write ? MODBUS_FC_WRITE_SINGLE_REGISTER
@@ -74,8 +74,8 @@ uint8_t modbus_handler_send_request(uint8_t device_idx, const char* property,
handler.last_device_idx = device_idx; handler.last_device_idx = device_idx;
strncpy(handler.last_property, property, sizeof(handler.last_property) - 1); strncpy(handler.last_property, property, sizeof(handler.last_property) - 1);
handler.last_property[sizeof(handler.last_property) - 1] = '\0'; handler.last_property[sizeof(handler.last_property) - 1] = '\0';
return 1; return true;
} }
return 0; return false;
} }

View File

@@ -158,11 +158,11 @@ void modbus_set_timeout(modbus_context_t* ctx, uint32_t timeout_ms) {
ctx->response_timeout = timeout_ms; ctx->response_timeout = timeout_ms;
} }
uint8_t modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr, bool modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr,
uint8_t function, uint16_t address, uint8_t function, uint16_t address,
uint16_t value) { uint16_t value) {
if (ctx->state != MODBUS_IDLE) { if (ctx->state != MODBUS_IDLE) {
return 0; // Busy return false; // Busy
} }
uint16_t len = uint16_t len =
@@ -173,7 +173,7 @@ uint8_t modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr,
ctx->rx_len = 0; ctx->rx_len = 0;
ctx->state = MODBUS_WAITING_RESPONSE; ctx->state = MODBUS_WAITING_RESPONSE;
return 1; // Success return true; // Success
} }
void modbus_process(modbus_context_t* ctx) { void modbus_process(modbus_context_t* ctx) {

View File

@@ -6,6 +6,7 @@
#include "debug.h" #include "debug.h"
#include "modbus_handler.h" #include "modbus_handler.h"
#include "onewire_temp.h"
#include "systick.h" #include "systick.h"
// MQTT // MQTT
@@ -19,11 +20,12 @@
#define HOMIE_STATE_LOST "lost" #define HOMIE_STATE_LOST "lost"
#define HOMIE_STATE_SLEEPING "sleeping" #define HOMIE_STATE_SLEEPING "sleeping"
#define HOMIE_STATE_DISCONNECTED "disconnected" #define HOMIE_STATE_DISCONNECTED "disconnected"
#define MAX_PAYLOAD_LENGTH 256
// nodes list buffer
char nodes_list[MAX_PAYLOAD_LENGTH];
// Parse Homie topic format: homie/node-id/device-name/property/[set|get] // Parse Homie topic format: homie/node-id/device-name/property/[set|get]
// Returns: 1 if successful, 0 if invalid format or buffer overflow static bool parse_homie_topic(const char* topic, size_t topic_len,
static uint8_t parse_homie_topic(const char* topic, size_t topic_len,
char* device_name, size_t name_max, char* device_name, size_t name_max,
char* property, size_t prop_max, char* property, size_t prop_max,
uint8_t* is_set) { uint8_t* is_set) {
@@ -34,11 +36,11 @@ static uint8_t parse_homie_topic(const char* topic, size_t topic_len,
// Skip first three segments (homie/node-id/device-name/) // Skip first three segments (homie/node-id/device-name/)
while (segment < 3 && segment_start < topic_end) { while (segment < 3 && segment_start < topic_end) {
const char* slash = memchr(segment_start, '/', topic_end - segment_start); const char* slash = memchr(segment_start, '/', topic_end - segment_start);
if (!slash) return 0; if (!slash) return false;
if (segment == 2) { if (segment == 2) {
size_t len = slash - segment_start; size_t len = slash - segment_start;
if (len >= name_max) return 0; if (len >= name_max) return false;
memcpy(device_name, segment_start, len); memcpy(device_name, segment_start, len);
device_name[len] = '\0'; device_name[len] = '\0';
} }
@@ -48,19 +50,19 @@ static uint8_t parse_homie_topic(const char* topic, size_t topic_len,
} }
const char* slash = memchr(segment_start, '/', topic_end - segment_start); const char* slash = memchr(segment_start, '/', topic_end - segment_start);
if (!slash) return 0; if (!slash) return false;
size_t len = slash - segment_start; size_t len = slash - segment_start;
if (len >= prop_max) return 0; if (len >= prop_max) return false;
memcpy(property, segment_start, len); memcpy(property, segment_start, len);
property[len] = '\0'; property[len] = '\0';
segment_start = slash + 1; segment_start = slash + 1;
if (segment_start >= topic_end) return 0; // Missing set/get if (segment_start >= topic_end) return false; // Missing set/get
*is_set = (*segment_start == 's'); *is_set = (*segment_start == 's');
return 1; return true;
} }
// MQTT client // MQTT client
@@ -138,14 +140,12 @@ void publish_message(MQTTClient* client, const char* payload,
if (MQTTPublish(client, topic, &message) != 0) { if (MQTTPublish(client, topic, &message) != 0) {
DEBUG_PRINT("Publish failed\n"); DEBUG_PRINT("Publish failed\n");
} else {
DEBUG_PRINT("Message published successfully\n");
} }
} }
// publish retained messages // publish retained messages
static void publish_retained(MQTTClient* client, const char* topic, void publish_retained(MQTTClient* client, const char* topic,
const char* payload) { const char* payload) {
MQTTMessage message = {.qos = QOS1, MQTTMessage message = {.qos = QOS1,
.retained = 1, .retained = 1,
.dup = 0, .dup = 0,
@@ -157,7 +157,7 @@ static void publish_retained(MQTTClient* client, const char* topic,
} }
} }
// Send state update // TODO: this is a modbus value only
void publish_value(MQTTClient* client, const char* device_name, void publish_value(MQTTClient* client, const char* device_name,
const char* property, uint16_t value) { const char* property, uint16_t value) {
DEBUG_PRINT("publish_value(device_name=%s, property=%s, value=%u)\n", DEBUG_PRINT("publish_value(device_name=%s, property=%s, value=%u)\n",
@@ -192,7 +192,6 @@ void publish_value(MQTTClient* client, const char* device_name,
static void publish_device_attributes(MQTTClient* client) { static void publish_device_attributes(MQTTClient* client) {
char topic[MAX_TOPIC_LENGTH]; char topic[MAX_TOPIC_LENGTH];
static char nodes_list[MAX_PAYLOAD_LENGTH];
char* ptr = nodes_list; char* ptr = nodes_list;
size_t remaining = sizeof(nodes_list); size_t remaining = sizeof(nodes_list);
@@ -208,6 +207,7 @@ static void publish_device_attributes(MQTTClient* client) {
ptr = nodes_list; ptr = nodes_list;
*ptr = '\0'; *ptr = '\0';
// add rs485 devices
for (int i = 0; i < RS485_DEVICE_COUNT; i++) { for (int i = 0; i < RS485_DEVICE_COUNT; i++) {
if (i > 0 && remaining > 1) { if (i > 0 && remaining > 1) {
*ptr++ = ','; *ptr++ = ',';
@@ -231,8 +231,8 @@ static void publish_device_attributes(MQTTClient* client) {
} }
} }
static void publish_node_attributes(MQTTClient* client, static void publish_rs485_node_attributes(MQTTClient* client,
const rs485_device_t* device) { const rs485_device_t* device) {
char topic[MAX_TOPIC_LENGTH]; char topic[MAX_TOPIC_LENGTH];
// Node base attributes // Node base attributes
@@ -304,7 +304,7 @@ void mqtt_init(mqtt_state_t* state) {
state->opts.qos = QOS1; state->opts.qos = QOS1;
state->last_reconnect = 0; state->last_reconnect = 0;
state->last_yield = 0; state->last_yield = 0;
state->is_connected = 0; state->is_connected = false;
} }
// Find device by name and return its index // Find device by name and return its index
@@ -366,14 +366,19 @@ void mqtt_process(mqtt_state_t* state) {
rc = setup_mqtt_client(&state->network, &state->opts, &state->client); rc = setup_mqtt_client(&state->network, &state->opts, &state->client);
if (rc == 0) { if (rc == 0) {
state->is_connected = 1; state->is_connected = true;
if (!discovery_published) { if (!discovery_published) {
publish_device_attributes(&state->client); publish_device_attributes(&state->client);
for (int i = 0; i < RS485_DEVICE_COUNT; i++) { for (int i = 0; i < RS485_DEVICE_COUNT; i++) {
publish_node_attributes(&state->client, &RS485_DEVICES[i]); publish_rs485_node_attributes(&state->client, &RS485_DEVICES[i]);
} }
// with onewire we can discover new devices on the bus during runtime
// is it worth implementing?
onewire_temp_publish_discovery(&state->client, NODE_CONFIG.id);
discovery_published = 1; discovery_published = 1;
} }
@@ -384,7 +389,7 @@ void mqtt_process(mqtt_state_t* state) {
rc = subscribe_to_topic(&state->client, sub_topic, QOS1, rc = subscribe_to_topic(&state->client, sub_topic, QOS1,
message_arrived); message_arrived);
if (rc != 0) { if (rc != 0) {
state->is_connected = 0; state->is_connected = false;
} }
} }
state->last_reconnect = now; state->last_reconnect = now;
@@ -392,7 +397,7 @@ void mqtt_process(mqtt_state_t* state) {
} else if (now - state->last_yield >= MQTT_YIELD_INTERVAL) { } else if (now - state->last_yield >= MQTT_YIELD_INTERVAL) {
rc = MQTTYield(&state->client, MQTT_MAX_PACKET_WAIT); rc = MQTTYield(&state->client, MQTT_MAX_PACKET_WAIT);
if (rc != 0) { if (rc != 0) {
state->is_connected = 0; state->is_connected = false;
} }
state->last_yield = now; state->last_yield = now;
} }

324
src/onewire_temp.c Normal file
View File

@@ -0,0 +1,324 @@
#include "onewire_temp.h"
#include <onewire.h>
#include <string.h>
#include "debug.h"
#include "systick.h"
#define ONEWIRE_CONVERSION_TIME_MS 750
typedef struct {
uint8_t address[8];
float temperature;
onewire_state_t state;
uint32_t convert_start_time;
bool valid;
} onewire_sensor_t;
typedef struct {
onewire_sensor_t sensors[ONEWIRE_MAX_SENSORS];
uint8_t count;
bool parallel_mode;
} onewire_system_t;
static onewire_system_t ow_sys = {0};
void onewire_temp_init(void) {
uint8_t addr[8];
OneWireBegin();
OneWireResetSearch();
while (ow_sys.count < ONEWIRE_MAX_SENSORS) {
if (!OneWireSearch(addr, true)) {
break;
}
// Validate sensor
if (OneWireCrc8(addr, 7) != addr[7]) {
continue;
}
// Check if it's a temperature sensor
switch (addr[0]) {
case 0x10: // DS18S20
case 0x28: // DS18B20
case 0x22: // DS1822
break;
default:
continue; // Not a supported temperature sensor
}
// Store valid sensor
onewire_sensor_t* sensor = &ow_sys.sensors[ow_sys.count];
memcpy(sensor->address, addr, 8);
sensor->valid = true;
sensor->state = ONEWIRE_STATE_READY;
sensor->temperature = ONEWIRE_TEMP_INVALID;
ow_sys.count++;
}
}
static float convert_temperature(const uint8_t* data, uint8_t family_code) {
int16_t raw = (data[1] << 8) | data[0];
// DS18S20
if (family_code == 0x10) {
raw = raw << 3;
if (data[7] == 0x10) {
raw = (raw & 0xFFF0) + 12 - data[6];
}
}
// DS18B20/DS1822
else {
switch (data[4] & 0x60) {
case 0x00:
raw &= ~7;
break; // 9-bit
case 0x20:
raw &= ~3;
break; // 10-bit
case 0x40:
raw &= ~1;
break; // 11-bit
}
}
return (float)(raw / 16.0);
}
static bool start_conversion(onewire_sensor_t* sensor) {
if (!sensor->valid || sensor->state != ONEWIRE_STATE_READY) {
return false;
}
if (!OneWireReset()) {
return false;
}
OneWireSelect(sensor->address);
OneWireWrite(0x44, 0); // Start conversion w/o parasite power
sensor->state = ONEWIRE_STATE_CONVERTING;
sensor->convert_start_time = millis();
return true;
}
static bool read_temperature(onewire_sensor_t* sensor) {
uint8_t data[9];
if (!OneWireReset()) {
return false;
}
OneWireSelect(sensor->address);
OneWireWrite(0xBE, 0); // Read scratchpad
OneWireReadBytes(data, 9);
if (OneWireCrc8(data, 8) != data[8]) {
return false;
}
sensor->temperature = convert_temperature(data, sensor->address[0]);
return true;
}
void onewire_temp_process(void) {
uint32_t now = millis();
for (uint8_t i = 0; i < ow_sys.count; i++) {
onewire_sensor_t* sensor = &ow_sys.sensors[i];
if (!sensor->valid) {
continue;
}
switch (sensor->state) {
case ONEWIRE_STATE_READY:
if (!ow_sys.parallel_mode) {
start_conversion(sensor);
}
break;
case ONEWIRE_STATE_CONVERTING:
if (now - sensor->convert_start_time >= ONEWIRE_CONVERSION_TIME_MS) {
sensor->state = ONEWIRE_STATE_READ;
}
break;
case ONEWIRE_STATE_READ:
if (!read_temperature(sensor)) {
sensor->valid = false;
}
sensor->state = ONEWIRE_STATE_READY;
break;
}
}
}
void onewire_temp_start_parallel(void) {
if (!OneWireReset()) {
return;
}
OneWireSkip(); // Address all devices
OneWireWrite(0x44, 1); // Start conversion with parasite power
uint32_t now = millis();
for (uint8_t i = 0; i < ow_sys.count; i++) {
if (ow_sys.sensors[i].valid) {
ow_sys.sensors[i].state = ONEWIRE_STATE_CONVERTING;
ow_sys.sensors[i].convert_start_time = now;
}
}
}
float onewire_temp_get(uint8_t index) {
return (index < ow_sys.count && ow_sys.sensors[index].valid)
? ow_sys.sensors[index].temperature
: ONEWIRE_TEMP_INVALID;
}
uint8_t onewire_temp_count(void) { return ow_sys.count; }
const uint8_t* onewire_temp_address(uint8_t index) {
return (index < ow_sys.count) ? ow_sys.sensors[index].address : NULL;
}
bool onewire_temp_valid(uint8_t index) {
return (index < ow_sys.count) ? ow_sys.sensors[index].valid : false;
}
void onewire_temp_set_parallel(bool enable) { ow_sys.parallel_mode = enable; }
// MQTT
void onewire_temp_publish_discovery(MQTTClient* client, const char* node_id) {
char topic[MAX_TOPIC_LENGTH];
char sensor_name[32];
uint8_t sensor_count = onewire_temp_count();
// append to node list
size_t current_len = strlen(nodes_list);
char* ptr = nodes_list + current_len;
size_t remaining = sizeof(nodes_list) - current_len;
for (uint8_t i = 0; i < sensor_count && remaining > 1; i++) {
if (!onewire_temp_valid(i)) {
continue;
}
// , if not 1st
if (current_len > 0 && remaining > 1) {
*ptr++ = ',';
remaining--;
current_len++;
}
const uint8_t* addr = onewire_temp_address(i);
int written = snprintf(sensor_name, sizeof(sensor_name),
"temp_%02x%02x%02x%02x%02x%02x%02x%02x",
addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5], addr[6], addr[7]);
if (written < 0 || (size_t)written >= remaining) {
break;
}
memcpy(ptr, sensor_name, written);
ptr += written;
remaining -= written;
current_len += written;
}
*ptr = '\0';
// pub node list
snprintf(topic, sizeof(topic), "homie/%s/$nodes", node_id);
publish_retained(client, topic, nodes_list);
for (uint8_t i = 0; i < sensor_count; i++) {
if (!onewire_temp_valid(i)) {
continue;
}
const uint8_t* addr = onewire_temp_address(i);
snprintf(sensor_name, sizeof(sensor_name),
"temp_%02x%02x%02x%02x%02x%02x%02x%02x",
addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5], addr[6], addr[7]);
snprintf(topic, sizeof(topic), "homie/%s/%s/$name", node_id, sensor_name);
char display_name[48];
snprintf(display_name, sizeof(display_name),
"Temperature Sensor %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5], addr[6], addr[7]);
publish_retained(client, topic, display_name);
snprintf(topic, sizeof(topic), "homie/%s/%s/$properties", node_id, sensor_name);
publish_retained(client, topic, "temperature,address");
// temperature properties
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$name", node_id, sensor_name);
publish_retained(client, topic, "Temperature");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$datatype", node_id, sensor_name);
publish_retained(client, topic, "float");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$unit", node_id, sensor_name);
publish_retained(client, topic, "°C");
// address properties
snprintf(topic, sizeof(topic), "homie/%s/%s/address/$name", node_id, sensor_name);
publish_retained(client, topic, "ROM Address");
snprintf(topic, sizeof(topic), "homie/%s/%s/address/$datatype", node_id, sensor_name);
publish_retained(client, topic, "string");
char addr_str[24];
snprintf(addr_str, sizeof(addr_str),
"%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
addr[0], addr[1], addr[2], addr[3],
addr[4], addr[5], addr[6], addr[7]);
snprintf(topic, sizeof(topic), "homie/%s/%s/address", node_id, sensor_name);
publish_retained(client, topic, addr_str);
}
}
// MQTT
void onewire_temp_publish_values(MQTTClient* client, const char* node_id) {
char topic[MAX_TOPIC_LENGTH];
char value[8];
uint8_t sensor_count = onewire_temp_count();
for (uint8_t i = 0; i < sensor_count; i++) {
if (!onewire_temp_valid(i)) continue;
float temp = onewire_temp_get(i);
if (temp == ONEWIRE_TEMP_INVALID) continue;
// fixed-point conversion
int16_t temp_fixed = (int16_t)(temp * 100);
const uint8_t* addr = onewire_temp_address(i);
snprintf(topic, sizeof(topic),
"homie/%s/temp_%02x%02x%02x%02x%02x%02x%02x%02x/temperature",
node_id, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
addr[6], addr[7]);
uint8_t neg = temp_fixed < 0;
if (neg) temp_fixed = -temp_fixed;
uint8_t idx = 0;
if (neg) value[idx++] = '-';
uint16_t whole = temp_fixed / 100;
uint8_t decimal = temp_fixed % 100;
if (whole >= 10) value[idx++] = '0' + (whole / 10);
value[idx++] = '0' + (whole % 10);
value[idx++] = '.';
value[idx++] = '0' + (decimal / 10);
value[idx++] = '0' + (decimal % 10);
value[idx] = '\0';
publish_message(client, value, topic);
}
}

View File

@@ -1,5 +1,7 @@
#include "system_init.h" #include "system_init.h"
#include <stdbool.h>
#include "ch32v003fun.h" #include "ch32v003fun.h"
#include "debug.h" #include "debug.h"
#include "dhcp.h" #include "dhcp.h"
@@ -10,7 +12,7 @@
#include "timer.h" #include "timer.h"
#include "uart.h" #include "uart.h"
#define DHCP_TIMEOUT_MS 15000 #define DHCP_TIMEOUT_MS 120000
void init_system(void) { void init_system(void) {
SystemInit(); SystemInit();
@@ -22,14 +24,14 @@ void init_system(void) {
rs485_init(UART_BRR_APB2); rs485_init(UART_BRR_APB2);
} }
int wait_for_dhcp(void) { bool wait_for_dhcp(void) {
uint32_t start = millis(); uint32_t start = millis();
while (dhcp_get_state() != DHCP_STATE_LEASED) { while (dhcp_get_state() != DHCP_STATE_LEASED) {
if (millis() - start >= DHCP_TIMEOUT_MS) { if (millis() - start >= DHCP_TIMEOUT_MS) {
DEBUG_PRINT("DHCP timeout\n"); DEBUG_PRINT("DHCP timeout\n");
return 0; return false;
} }
dhcp_process(); dhcp_process();
} }
return 1; return true;
} }

View File

@@ -15,7 +15,7 @@ int _write(__attribute__((unused)) int fd, const char *buf, int size) {
int putchar(int c) { int putchar(int c) {
while (!(USART2->STATR & USART_FLAG_TC)); // Wait for transmission complete while (!(USART2->STATR & USART_FLAG_TC)); // Wait for transmission complete
USART2->DATAR = (uint8_t)c; // Send character USART2->DATAR = (uint8_t)c; // Send character
return 1; return (unsigned char)c;
} }
void init_uart(int uart_brr) { void init_uart(int uart_brr) {