Files
ch32v203-eth-node/onewire_temp.c
2024-11-25 01:13:26 +06:00

386 lines
11 KiB
C

#include "onewire_temp.h"
#include <string.h>
#include "debug.h"
#include "onewire.h"
#include "systick.h"
#define ONEWIRE_CONVERSION_TIME_MS 750
#define ONEWIRE_MAX_RETRIES 255
typedef struct {
uint8_t address[8];
float temperature;
onewire_state_t state;
uint32_t convert_start_time;
bool valid;
uint8_t error_count;
uint32_t last_success_time;
} onewire_sensor_t;
typedef struct {
onewire_sensor_t sensors[ONEWIRE_MAX_SENSORS];
uint8_t count;
bool parallel_mode;
} onewire_system_t;
static onewire_system_t ow_sys = {0};
void onewire_temp_init(void) {
uint8_t addr[8];
OneWireBegin();
OneWireResetSearch();
while (ow_sys.count < ONEWIRE_MAX_SENSORS) {
if (!OneWireSearch(addr, true)) {
break;
}
// Validate sensor
if (OneWireCrc8(addr, 7) != addr[7]) {
continue;
}
// Check if it's a temperature sensor
switch (addr[0]) {
case 0x10: // DS18S20
case 0x28: // DS18B20
case 0x22: // DS1822
break;
default:
continue; // Not a supported temperature sensor
}
// Store valid sensor
onewire_sensor_t* sensor = &ow_sys.sensors[ow_sys.count];
memcpy(sensor->address, addr, 8);
sensor->valid = true;
sensor->state = ONEWIRE_STATE_READY;
sensor->temperature = ONEWIRE_TEMP_INVALID;
sensor->error_count = 0;
sensor->last_success_time = millis();
ow_sys.count++;
}
}
static float convert_temperature(const uint8_t* data, uint8_t family_code) {
int16_t raw = (data[1] << 8) | data[0];
// DS18S20
if (family_code == 0x10) {
raw = raw << 3;
if (data[7] == 0x10) {
raw = (raw & 0xFFF0) + 12 - data[6];
}
}
// DS18B20/DS1822
else {
switch (data[4] & 0x60) {
case 0x00:
raw &= ~7;
break; // 9-bit
case 0x20:
raw &= ~3;
break; // 10-bit
case 0x40:
raw &= ~1;
break; // 11-bit
}
}
return (float)(raw / 16.0);
}
static bool start_conversion(onewire_sensor_t* sensor) {
if (!sensor->valid || !sensor->state != ONEWIRE_STATE_READY) {
return false;
}
if (!OneWireReset()) {
return false;
}
OneWireSelect(sensor->address);
OneWireWrite(0x44, 0); // Start conversion w/o parasite power
sensor->state = ONEWIRE_STATE_CONVERTING;
sensor->convert_start_time = millis();
return true;
}
static bool read_temperature(onewire_sensor_t* sensor) {
uint8_t data[9];
if (!OneWireReset()) {
return false;
}
OneWireSelect(sensor->address);
OneWireWrite(0xBE, 0); // Read scratchpad
OneWireReadBytes(data, 9);
if (OneWireCrc8(data, 8) != data[8]) {
return false;
}
sensor->temperature = convert_temperature(data, sensor->address[0]);
sensor->error_count = 0;
sensor->last_success_time = millis();
return true;
}
void onewire_temp_process(void) {
uint32_t now = millis();
for (uint8_t i = 0; i < ow_sys.count; i++) {
onewire_sensor_t* sensor = &ow_sys.sensors[i];
if (!sensor->valid) {
continue;
}
switch (sensor->state) {
case ONEWIRE_STATE_READY:
if (!ow_sys.parallel_mode) {
if (!start_conversion(sensor)) {
sensor->error_count++;
if (sensor->error_count >= ONEWIRE_MAX_RETRIES) {
sensor->valid = false;
DEBUG_PRINT(
"sensor %d marked temporarily invalid after %d retries\n", i,
ONEWIRE_MAX_RETRIES);
}
}
}
break;
case ONEWIRE_STATE_CONVERTING:
if (now - sensor->convert_start_time >= ONEWIRE_CONVERSION_TIME_MS) {
sensor->state = ONEWIRE_STATE_READ;
}
break;
case ONEWIRE_STATE_READ:
if (!read_temperature(sensor)) {
sensor->error_count++;
if (sensor->error_count >= ONEWIRE_MAX_RETRIES) {
sensor->valid = false;
DEBUG_PRINT(
"sensor %d marked temporarily invalid after %d retries\n", i,
ONEWIRE_MAX_RETRIES);
}
} else {
sensor->valid = true; // re-enable
sensor->error_count = 0;
}
sensor->state = ONEWIRE_STATE_READY;
break;
}
}
}
void onewire_temp_start_parallel(void) {
if (!OneWireReset()) {
return;
}
OneWireSkip(); // Address all devices
OneWireWrite(0x44, 1); // Start conversion with parasite power
uint32_t now = millis();
for (uint8_t i = 0; i < ow_sys.count; i++) {
if (ow_sys.sensors[i].valid) {
ow_sys.sensors[i].state = ONEWIRE_STATE_CONVERTING;
ow_sys.sensors[i].convert_start_time = now;
}
}
}
float onewire_temp_get(uint8_t index) {
return (index < ow_sys.count && ow_sys.sensors[index].valid)
? ow_sys.sensors[index].temperature
: ONEWIRE_TEMP_INVALID;
}
uint8_t onewire_temp_count(void) { return ow_sys.count; }
const uint8_t* onewire_temp_address(uint8_t index) {
return (index < ow_sys.count) ? ow_sys.sensors[index].address : NULL;
}
bool onewire_temp_valid(uint8_t index) {
return (index < ow_sys.count) ? ow_sys.sensors[index].valid : false;
}
void onewire_temp_set_parallel(bool enable) { ow_sys.parallel_mode = enable; }
// MQTT
void onewire_temp_publish_discovery(MQTTClient* client, const char* node_id) {
char topic[MAX_TOPIC_LENGTH];
char sensor_name[32];
uint8_t sensor_count = onewire_temp_count();
// append to node list
size_t current_len = strlen(nodes_list);
char* ptr = nodes_list + current_len;
size_t remaining = sizeof(nodes_list) - current_len;
for (uint8_t i = 0; i < sensor_count && remaining > 1; i++) {
if (!onewire_temp_valid(i)) {
continue;
}
// , if not 1st
if (current_len > 0 && remaining > 1) {
*ptr++ = ',';
remaining--;
current_len++;
}
const uint8_t* addr = onewire_temp_address(i);
int written =
snprintf(sensor_name, sizeof(sensor_name),
"temp_%02x%02x%02x%02x%02x%02x%02x%02x", addr[0], addr[1],
addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]);
if (written < 0 || (size_t)written >= remaining) {
break;
}
memcpy(ptr, sensor_name, written);
ptr += written;
remaining -= written;
current_len += written;
}
*ptr = '\0';
// pub node list
snprintf(topic, sizeof(topic), "homie/%s/$nodes", node_id);
publish_retained(client, topic, nodes_list);
for (uint8_t i = 0; i < sensor_count; i++) {
if (!onewire_temp_valid(i)) {
continue;
}
const uint8_t* addr = onewire_temp_address(i);
snprintf(sensor_name, sizeof(sensor_name),
"temp_%02x%02x%02x%02x%02x%02x%02x%02x", addr[0], addr[1], addr[2],
addr[3], addr[4], addr[5], addr[6], addr[7]);
snprintf(topic, sizeof(topic), "homie/%s/%s/$name", node_id, sensor_name);
char display_name[48];
snprintf(display_name, sizeof(display_name),
"Temperature Sensor %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6],
addr[7]);
publish_retained(client, topic, display_name);
snprintf(topic, sizeof(topic), "homie/%s/%s/$properties", node_id,
sensor_name);
publish_retained(client, topic, "temperature,address,status,error_count");
// temperature properties
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$name", node_id,
sensor_name);
publish_retained(client, topic, "Temperature");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$datatype", node_id,
sensor_name);
publish_retained(client, topic, "float");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$unit", node_id,
sensor_name);
publish_retained(client, topic, "°C");
// address properties
snprintf(topic, sizeof(topic), "homie/%s/%s/address/$name", node_id,
sensor_name);
publish_retained(client, topic, "ROM Address");
snprintf(topic, sizeof(topic), "homie/%s/%s/address/$datatype", node_id,
sensor_name);
publish_retained(client, topic, "string");
char addr_str[24];
snprintf(addr_str, sizeof(addr_str),
"%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X", addr[0], addr[1],
addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]);
snprintf(topic, sizeof(topic), "homie/%s/%s/address", node_id, sensor_name);
publish_retained(client, topic, addr_str);
snprintf(topic, sizeof(topic), "homie/%s/%s/status/$name", node_id,
sensor_name);
publish_retained(client, topic, "Sensor Status");
snprintf(topic, sizeof(topic), "homie/%s/%s/status/$datatype", node_id,
sensor_name);
publish_retained(client, topic, "enum");
snprintf(topic, sizeof(topic), "homie/%s/%s/status/$format", node_id,
sensor_name);
publish_retained(client, topic, "valid,invalid");
snprintf(topic, sizeof(topic), "homie/%s/%s/error_count/$name", node_id,
sensor_name);
publish_retained(client, topic, "Error Count");
snprintf(topic, sizeof(topic), "homie/%s/%s/error_count/$datatype", node_id,
sensor_name);
publish_retained(client, topic, "integer");
}
}
// MQTT
void onewire_temp_publish_values(MQTTClient* client, const char* node_id) {
char topic[MAX_TOPIC_LENGTH];
char value[8];
uint8_t sensor_count = onewire_temp_count();
for (uint8_t i = 0; i < sensor_count; i++) {
bool is_valid = onewire_temp_valid(i);
const uint8_t* addr = onewire_temp_address(i);
char base_topic[MAX_TOPIC_LENGTH];
snprintf(base_topic, sizeof(base_topic),
"homie/%s/temp_%02x%02x%02x%02x%02x%02x%02x%02x", node_id, addr[0],
addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]);
// publish status
snprintf(topic, sizeof(topic), "%s/status", base_topic);
publish_message(client, is_valid ? "valid" : "invalid", topic);
// publish error cnt
snprintf(topic, sizeof(topic), "%s/error_count", base_topic);
snprintf(value, sizeof(value), "%u", ow_sys.sensors[i].error_count);
publish_message(client, value, topic);
snprintf(topic, sizeof(topic), "%s/temperature", base_topic);
if (is_valid) {
float temp = onewire_temp_get(i);
if (temp == ONEWIRE_TEMP_INVALID) {
publish_message(client, "0.00", topic);
} else {
// temp to str
int16_t temp_fixed = (int16_t)(temp * 100);
uint8_t neg = temp_fixed < 0;
if (neg) temp_fixed = -temp_fixed;
uint8_t idx = 0;
if (neg) value[idx++] = '-';
uint16_t whole = temp_fixed / 100;
uint8_t decimal = temp_fixed % 100;
if (whole >= 10) value[idx++] = '0' + (whole / 10);
value[idx++] = '0' + (whole % 10);
value[idx++] = '.';
value[idx++] = '0' + (decimal / 10);
value[idx++] = '0' + (decimal % 10);
value[idx] = '\0';
publish_message(client, value, topic);
}
} else {
publish_message(client, "0.00", topic);
}
}
}