167 lines
5.4 KiB
C
167 lines
5.4 KiB
C
#include "spi_dma.h"
|
|
|
|
#include "ch32v003fun.h"
|
|
#include "debug.h"
|
|
|
|
volatile transfer_state_t tx_state = IDLE;
|
|
volatile transfer_state_t rx_state = IDLE;
|
|
|
|
static const uint8_t tx_dummy_byte = 0xFF;
|
|
static uint8_t rx_dummy; // Static RX dummy buffer
|
|
|
|
static inline void wait_for_transfer_complete(void) {
|
|
while (tx_state != TX_DONE || rx_state != RX_DONE);
|
|
}
|
|
|
|
// static inline void spi_wait_not_busy(void) {
|
|
// while ((SPI1->STATR & SPI_STATR_BSY) != 0);
|
|
// }
|
|
|
|
void set_transfer_states(void) {
|
|
tx_state = TRANSMITTING;
|
|
rx_state = RECEIVING;
|
|
}
|
|
|
|
void clear_transfer_states(void) {
|
|
tx_state = IDLE;
|
|
rx_state = IDLE;
|
|
}
|
|
|
|
void DMA1_HandleIrq(uint32_t channel_interrupt,
|
|
volatile transfer_state_t* state,
|
|
transfer_state_t active_state,
|
|
transfer_state_t done_state) {
|
|
if (DMA1->INTFR & channel_interrupt) { // check if DMA interrupt occurred
|
|
DMA1->INTFCR = channel_interrupt; // clear the interrupt flag
|
|
if (*state == active_state) {
|
|
*state = done_state;
|
|
}
|
|
}
|
|
}
|
|
void DMA1_Channel3_IRQHandler(void) __attribute__((interrupt));
|
|
void DMA1_Channel2_IRQHandler(void) __attribute__((interrupt));
|
|
|
|
void DMA1_Channel3_IRQHandler(void) {
|
|
DMA1_HandleIrq(DMA1_IT_TC3, &tx_state, TRANSMITTING, TX_DONE);
|
|
}
|
|
|
|
void DMA1_Channel2_IRQHandler(void) {
|
|
DMA1_HandleIrq(DMA1_IT_TC2, &rx_state, RECEIVING, RX_DONE);
|
|
}
|
|
|
|
void configure_dma(DMA_Channel_TypeDef* tx_channel, uint32_t tx_addr,
|
|
DMA_Channel_TypeDef* rx_channel, uint32_t rx_addr,
|
|
int rx_circular, uint16_t len) {
|
|
// disable DMA channels
|
|
tx_channel->CFGR &= ~DMA_CFGR1_EN;
|
|
rx_channel->CFGR &= ~DMA_CFGR1_EN;
|
|
|
|
// set memory addresses and transfer count
|
|
tx_channel->MADDR = tx_addr;
|
|
tx_channel->CNTR = len;
|
|
rx_channel->MADDR = rx_addr;
|
|
rx_channel->CNTR = len;
|
|
|
|
// set or clear the circular mode for RX
|
|
rx_channel->CFGR =
|
|
(rx_channel->CFGR & ~DMA_CFGR1_CIRC) | (rx_circular ? DMA_CFGR1_CIRC : 0);
|
|
|
|
// enable DMA channels
|
|
tx_channel->CFGR |= DMA_CFGR1_EN;
|
|
rx_channel->CFGR |= DMA_CFGR1_EN;
|
|
}
|
|
|
|
void spidma_read_buffer(uint8_t* buf, uint16_t len) {
|
|
set_transfer_states();
|
|
configure_dma(DMA1_Channel3, (uint32_t)&tx_dummy_byte, DMA1_Channel2,
|
|
(uint32_t)buf, 0, len);
|
|
|
|
wait_for_transfer_complete();
|
|
clear_transfer_states();
|
|
}
|
|
|
|
void spidma_write_buffer(uint8_t* buf, uint16_t len) {
|
|
set_transfer_states();
|
|
configure_dma(DMA1_Channel3, (uint32_t)buf, DMA1_Channel2, (uint32_t)rx_dummy,
|
|
1, len);
|
|
|
|
wait_for_transfer_complete();
|
|
clear_transfer_states();
|
|
}
|
|
|
|
uint8_t spi_transfer(uint8_t data) {
|
|
while (!(SPI1->STATR & SPI_STATR_TXE));
|
|
SPI1->DATAR = data;
|
|
|
|
while (!(SPI1->STATR & SPI_STATR_RXNE));
|
|
return SPI1->DATAR;
|
|
}
|
|
|
|
uint8_t spi_read_byte() { return spi_transfer(tx_dummy_byte); }
|
|
|
|
void spi_write_byte(uint8_t byte) { spi_transfer(byte); }
|
|
|
|
void spi_select(void) {
|
|
GPIOA->BCR = (1 << 4); // Set PA4 (CS) low
|
|
}
|
|
|
|
void spi_unselect(void) {
|
|
GPIOA->BSHR = (1 << 4); // Set PA4 (CS) high
|
|
}
|
|
|
|
void init_spidma(void) {
|
|
// Enable clock for GPIOA and SPI1
|
|
RCC->APB2PCENR |= RCC_APB2Periph_GPIOA | RCC_APB2Periph_SPI1;
|
|
// Enable clock for DMA1
|
|
RCC->AHBPCENR |= RCC_AHBPeriph_DMA1;
|
|
|
|
// SPI1 Pin Configuration
|
|
// CS on PA4, 10MHz Output, open-drain
|
|
GPIOA->CFGLR &= ~(0xf << (4 * 4));
|
|
GPIOA->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD) << (4 * 4);
|
|
// SCK on PA5, 10MHz Output, alt func, push-pull
|
|
GPIOA->CFGLR &= ~(0xf << (4 * 5));
|
|
GPIOA->CFGLR |= (GPIO_Speed_50MHz | GPIO_CNF_OUT_PP_AF) << (4 * 5);
|
|
// MOSI on PA7, 10MHz input, floating
|
|
GPIOA->CFGLR &= ~(0xf << (4 * 6));
|
|
GPIOA->CFGLR |= (GPIO_CNF_IN_FLOATING) << (4 * 6);
|
|
// MISO on PA6, 10MHz Output, alt func, push-pull
|
|
GPIOA->CFGLR &= ~(0xf << (4 * 7));
|
|
GPIOA->CFGLR |= (GPIO_Speed_50MHz | GPIO_CNF_OUT_PP_AF) << (4 * 7);
|
|
|
|
// Reset and Configure SPI1
|
|
SPI1->CTLR1 = 0; // Clear CTLR1 initially
|
|
|
|
SPI1->CTLR1 = SPI_Mode_Master | // Master mode
|
|
SPI_Direction_2Lines_FullDuplex | // Full duplex
|
|
SPI_DataSize_8b | // 8-bit data frame format
|
|
SPI_CPOL_Low | // Clock polarity
|
|
SPI_CPHA_1Edge | // Clock phase
|
|
SPI_BaudRatePrescaler_8 | // Baud rate prescaler
|
|
SPI_NSS_Soft; // Software NSS management
|
|
|
|
// Enable TX and RX DMA
|
|
SPI1->CTLR2 = SPI_CTLR2_TXDMAEN | SPI_CTLR2_RXDMAEN;
|
|
|
|
SPI1->I2SCFGR &= SPI_Mode_Select; // Disable I2S mode
|
|
SPI1->CTLR1 |= SPI_CTLR1_SPE; // Enable SPI
|
|
|
|
// DMA setup
|
|
DMA1_Channel3->PADDR = (uint32_t)&SPI1->DATAR; // TX Channel
|
|
DMA1_Channel3->CFGR = DMA_M2M_Disable | DMA_Priority_VeryHigh |
|
|
DMA_MemoryDataSize_Byte | DMA_PeripheralDataSize_Byte |
|
|
DMA_MemoryInc_Enable | DMA_PeripheralInc_Disable |
|
|
DMA_Mode_Normal | DMA_DIR_PeripheralDST | DMA_IT_TC;
|
|
|
|
DMA1_Channel2->PADDR = (uint32_t)&SPI1->DATAR; // RX Channel
|
|
DMA1_Channel2->CFGR = DMA_M2M_Disable | DMA_Priority_VeryHigh |
|
|
DMA_MemoryDataSize_Byte | DMA_PeripheralDataSize_Byte |
|
|
DMA_MemoryInc_Enable | DMA_PeripheralInc_Disable |
|
|
DMA_Mode_Normal | DMA_DIR_PeripheralSRC | DMA_IT_TC;
|
|
|
|
NVIC_SetPriority(DMA1_Channel2_IRQn, 0);
|
|
NVIC_SetPriority(DMA1_Channel3_IRQn, 0);
|
|
NVIC_EnableIRQ(DMA1_Channel3_IRQn);
|
|
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
|
|
}
|