Files
ch32v208_sens/port/ethernetif.c
2025-11-07 17:02:04 +06:00

344 lines
9.5 KiB
C

#include "ethernetif.h"
#include <stdio.h>
#include <string.h>
#include "ch32fun.h"
#include "ch32v20xhw.h"
#include "lwip/def.h"
#include "lwip/etharp.h"
#include "lwip/ethip6.h"
#include "lwip/mem.h"
#include "lwip/opt.h"
#include "lwip/pbuf.h"
#include "lwip/snmp.h"
#include "lwip/stats.h"
#include "netif/ethernet.h"
#include "systick.h"
#define IFNAME0 'e'
#define IFNAME1 'n'
#define ETH_RXBUFNB 4
#define ETH_TXBUFNB 1
#define ETH_MAX_PACKET_SIZE 1520
#define ETH_RX_BUF_SZE ETH_MAX_PACKET_SIZE
#define ETH_TX_BUF_SZE ETH_MAX_PACKET_SIZE
struct ethernetif {
ETH_DMADESCTypeDef* DMARxDescToGet;
ETH_DMADESCTypeDef* DMATxDescToSet;
};
__attribute__((aligned(4))) ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB];
__attribute__((aligned(4))) ETH_DMADESCTypeDef DMATxDscrTab[ETH_TXBUFNB];
__attribute__((aligned(4))) uint8_t MACRxBuf[ETH_RXBUFNB * ETH_RX_BUF_SZE];
__attribute__((aligned(4))) uint8_t MACTxBuf[ETH_TXBUFNB * ETH_TX_BUF_SZE];
static volatile uint8_t g_rx_error_cnt = 0;
volatile uint32_t g_isr_call_count = 0;
static err_t low_level_output(struct netif* netif, struct pbuf* p);
static struct pbuf* low_level_input(struct netif* netif);
static void low_level_init(struct netif* netif);
void eth_dma_tx_desc_chain_init(struct ethernetif* ethernetif,
ETH_DMADESCTypeDef* DMATxDescTab,
uint8_t* TxBuff, uint32_t TxBuffCount) {
ethernetif->DMATxDescToSet = DMATxDescTab;
DMATxDescTab->Status = 0;
DMATxDescTab->Buffer1Addr = (uint32_t)TxBuff;
DMATxDescTab->Buffer2NextDescAddr = (uint32_t)DMATxDescTab; // ring of 1
}
void eth_dma_rx_desc_chain_init(struct ethernetif* ethernetif,
ETH_DMADESCTypeDef* DMARxDescTab,
uint8_t* RxBuff, uint32_t RxBuffCount) {
ethernetif->DMARxDescToGet = DMARxDescTab;
for (uint32_t i = 0; i < RxBuffCount; i++) {
DMARxDescTab[i].Status = ETH_DMARxDesc_OWN; // give descriptor to DMA
DMARxDescTab[i].ControlBufferSize = ETH_RX_BUF_SZE;
DMARxDescTab[i].Buffer1Addr = (uint32_t)(&RxBuff[i * ETH_RX_BUF_SZE]);
if (i < (RxBuffCount - 1)) {
DMARxDescTab[i].Buffer2NextDescAddr = (uint32_t)(DMARxDescTab + i + 1);
} else {
DMARxDescTab[i].Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
}
}
}
void ETH_IRQHandler(void) __attribute__((interrupt));
void ETH_IRQHandler(void) {
g_isr_call_count++;
uint8_t flags = ETH10M->EIR;
// tx complete/error
if (flags & (RB_ETH_EIR_TXIF | RB_ETH_EIR_TXERIF)) {
// release DMA descriptor back to cpu
if (DMATxDscrTab[0].Status & ETH_DMATxDesc_OWN) {
DMATxDscrTab[0].Status &= ~ETH_DMATxDesc_OWN;
}
}
if (flags & RB_ETH_EIR_RXERIF) {
if (g_rx_error_cnt < 255) {
g_rx_error_cnt++;
}
}
ETH10M->EIR = flags;
}
static void low_level_init(struct netif* netif) {
struct ethernetif* ethernetif = netif->state;
uint8_t i;
netif->hwaddr_len = ETH_HWADDR_LEN;
netif->hwaddr[0] = 0x00;
netif->hwaddr[1] = 0x80;
netif->hwaddr[2] = 0xE1;
netif->hwaddr[3] = 0x00;
netif->hwaddr[4] = 0x00;
netif->hwaddr[5] = 0x01;
netif->mtu = 1500;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP;
// clock
RCC->APB2PCENR |= RCC_APB2Periph_AFIO;
RCC->CFGR0 &= ~((uint32_t)1 << 28);
RCC->CFGR0 |= (RCC_ETHCLK_Div2 << 28);
// interrupts
ETH10M->EIE = 0; // clear
ETH10M->EIE = RB_ETH_EIE_INTIE | RB_ETH_EIE_RXIE | RB_ETH_EIE_LINKIE |
RB_ETH_EIE_TXIE | RB_ETH_EIE_TXERIE | RB_ETH_EIE_RXERIE;
ETH10M->EIE |= RB_ETH_EIE_R_EN50; // 50 ohm pull-up
ETH10M->EIR = 0xFF;
ETH10M->ESTAT |= RB_ETH_ESTAT_INT | RB_ETH_ESTAT_BUFER;
// reset mac
ETH10M->ECON1 |= (RB_ETH_ECON1_TXRST | RB_ETH_ECON1_RXRST);
ETH10M->ECON1 &= ~(RB_ETH_ECON1_TXRST | RB_ETH_ECON1_RXRST);
// // mac regs
ETH10M->ERXFON = 0; // accept unicast, multicast, broadcast
R8_ETH_MAADRL1 = netif->hwaddr[5];
R8_ETH_MAADRL2 = netif->hwaddr[4];
R8_ETH_MAADRL3 = netif->hwaddr[3];
R8_ETH_MAADRL4 = netif->hwaddr[2];
R8_ETH_MAADRL5 = netif->hwaddr[1];
R8_ETH_MAADRL6 = netif->hwaddr[0];
ETH10M->MACON1 = RB_ETH_MACON1_MARXEN;
ETH10M->MACON2 &= ~RB_ETH_MACON2_PADCFG;
ETH10M->MACON2 |= PADCFG_AUTO_3 | RB_ETH_MACON2_TXCRCEN;
ETH10M->MACON2 &= ~RB_ETH_MACON2_HFRMEN; // disable huge frames
ETH10M->MACON2 |= RB_ETH_MACON2_FULDPX;
ETH10M->MAMXFL = ETH_MAX_PACKET_SIZE;
// PHY analog block
ETH10M->ECON2 &= ~(0x07 << 1);
ETH10M->ECON2 |= (5 << 1);
// en PHY block
EXTEN->EXTEN_CTR |= EXTEN_ETH_10M_EN;
// tx desc
eth_dma_tx_desc_chain_init(ethernetif, DMATxDscrTab, MACTxBuf, ETH_TXBUFNB);
// rx desc
eth_dma_rx_desc_chain_init(ethernetif, DMARxDscrTab, MACRxBuf, ETH_RXBUFNB);
printf("set PHY to 10Mbps Full-Duplex mode\n");
WritePHYReg(PHY_BMCR, PHY_BMCR_FORCE_10BASE_T_FD);
// init phy and auto neg
// WritePHYReg(PHY_BMCR, PHY_BMCR_RESET);
// Delay_Ms(200);
// WritePHYReg(PHY_BMCR, PHY_BMCR_FORCE_10BASE_T_FD | PHY_BMCR_AN_ENABLE |
// PHY_BMCR_AN_RESTART);
// Delay_Ms(1000);
NVIC_EnableIRQ(ETH_IRQn);
printf("low_level_init : done\n");
}
static err_t low_level_output(struct netif* netif, struct pbuf* p) {
struct ethernetif* ethernetif = netif->state;
struct pbuf* q;
uint32_t len = 0;
uint8_t* tx_buf_ptr = (uint8_t*)ethernetif->DMATxDescToSet->Buffer1Addr;
if (ethernetif->DMATxDescToSet->Status & ETH_DMATxDesc_OWN) {
return ERR_BUF;
}
for (q = p; q != NULL; q = q->next) {
memcpy(&tx_buf_ptr[len], q->payload, q->len);
len += q->len;
}
ethernetif->DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
ETH10M->ETXLN = len;
ETH10M->ETXST = (uint32_t)tx_buf_ptr;
ETH10M->ECON1 |= RB_ETH_ECON1_TXRTS;
ethernetif->DMATxDescToSet =
(ETH_DMADESCTypeDef*)ethernetif->DMATxDescToSet->Buffer2NextDescAddr;
MIB2_STATS_NETIF_ADD(netif, ifoutoctets, len);
return ERR_OK;
}
static struct pbuf* low_level_input(struct netif* netif) {
struct ethernetif* ethernetif = netif->state;
struct pbuf *p = NULL, *q;
u16_t len;
if ((ethernetif->DMARxDescToGet->Status & ETH_DMARxDesc_OWN) == 0) {
if (ETH10M->ESTAT & (RB_ETH_ESTAT_BUFER | RB_ETH_ESTAT_RXCRCER)) {
len = 0; // drop packet
// printf("RX ESTAT Error: 0x%02X\n", ETH10M->ESTAT);
ETH10M->ESTAT |= (RB_ETH_ESTAT_BUFER | RB_ETH_ESTAT_RXCRCER);
} else {
len = ETH10M->ERXLN;
if (len > 4) {
len -= 4;
} else {
len = 0;
}
}
// copy valid packet to pbuf
if (len > 0) {
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL) {
uint8_t* rx_buffer = (uint8_t*)ethernetif->DMARxDescToGet->Buffer1Addr;
uint32_t bytes_copied = 0;
for (q = p; q != NULL; q = q->next) {
memcpy(q->payload, rx_buffer + bytes_copied, q->len);
bytes_copied += q->len;
}
MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len);
}
}
ethernetif->DMARxDescToGet->Status |= ETH_DMARxDesc_OWN;
ethernetif->DMARxDescToGet =
(ETH_DMADESCTypeDef*)ethernetif->DMARxDescToGet->Buffer2NextDescAddr;
// tell hw where next free buffer is?
ETH10M->ERXST = (uint32_t)ethernetif->DMARxDescToGet->Buffer1Addr;
return p;
}
return NULL; // no packet
}
void ethernetif_input(struct netif* netif) {
struct pbuf* p;
p = low_level_input(netif);
if (p != NULL) {
if (netif->input(p, netif) != ERR_OK) {
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));
pbuf_free(p);
}
}
}
err_t ethernetif_init(struct netif* netif) {
struct ethernetif* ethernetif;
LWIP_ASSERT("netif != NULL", (netif != NULL));
ethernetif = mem_malloc(sizeof(struct ethernetif));
if (ethernetif == NULL) {
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
return ERR_MEM;
}
#if LWIP_NETIF_HOSTNAME
netif->hostname = "lwip-wch";
#endif
MIB2_INIT_NETIF(netif, snmp_ifType_ethernet_csmacd, 10000000); // 10 Mbps
netif->state = ethernetif;
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
#if LWIP_IPV4
netif->output = etharp_output;
#endif
#if LWIP_IPV6
netif->output_ip6 = ethip6_output;
#endif
netif->linkoutput = low_level_output;
low_level_init(netif);
return ERR_OK;
}
void ethernetif_link_poll(struct netif* netif) {
static uint32_t last_poll_time = 0;
uint32_t now = millis();
// every 500ms
if (now - last_poll_time < 500) {
return;
}
last_poll_time = now;
uint16_t bmsr = ReadPHYReg(PHY_BMSR);
if (bmsr & PHY_Linked_Status) {
if (!netif_is_link_up(netif)) {
printf("Link is UP (10M-FD Mode)\n");
ETH10M->ECON1 |= RB_ETH_ECON1_RXEN;
netif_set_link_up(netif);
g_rx_error_cnt = 0;
}
// polarity check
// https://github.com/openwch/ch32v20x/blob/main/EVT/EXAM/ETH/NetLib/eth_driver.c#L262
if (g_rx_error_cnt > 5) {
printf("RX error count: %d. Flipping PHY polarity\n", g_rx_error_cnt);
uint16_t mdix_val = ReadPHYReg(PHY_MDIX);
if ((mdix_val >> 2) & 0x01) {
mdix_val &= ~(3 << 2); // normal
} else {
mdix_val |= (1 << 2); // reverse
}
WritePHYReg(PHY_MDIX, mdix_val);
g_rx_error_cnt = 0;
}
} else {
if (netif_is_link_up(netif)) {
printf("Link is DOWN\n");
netif_set_link_down(netif);
ETH10M->ECON1 &= ~RB_ETH_ECON1_RXEN;
}
}
}
void WritePHYReg(uint8_t reg_add, uint16_t reg_val) {
R32_ETH_MIWR = (reg_add & RB_ETH_MIREGADR_MIRDL) | (1 << 8) | (reg_val << 16);
}
uint16_t ReadPHYReg(uint8_t reg_add) {
ETH10M->MIERGADR = reg_add;
return ETH10M->MIRD;
}