Files
hp3478a_ext/main.c
kuwoyuki fb6c3cbb7b feat: add ++dmm_loop cmd
++dmm_loop <0|1> to disable the HP3478A DMM loop, if for some reason the
DMM app loop is interfering with the GPIB bus when used as a USB-GPIB
controller
2025-12-04 18:26:02 +06:00

3439 lines
96 KiB
C

/*
* HP3478A internal USB-GPIB adapter & extension
*
* DESCRIPTION:
* This firmware acts as a bridge between USB-CDC and GPIB while also working
* in standalone mode inside HP3478A and MITM-ing GPIB and adding features.
*
* TODO:
* - Implement a VTable for features, to replace the massive switch
* to make consistnet entry and exits
* - Break main() up into app_process_usb() and app_process_gpib()?
* - Data logging?
*/
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aht20.h"
#include "ch32fun.h"
#include "config.h"
#include "fsusb.h"
#include "gpib_defs.h"
#include "i2c_bitbang.h"
#include "systick.h"
#define FW_VERSION "1.2.0"
#define PIN_VBUS PB10
#define PIN_BUZZ PC13
// USB
#define USB_HW_IS_ACTIVE() (!((USBFSCTX.USBFS_DevSleepStatus) & 0x02))
#define USB_RX_BUF_SIZE 1024
#define USB_RX_MASK (USB_RX_BUF_SIZE - 1)
#define USB_TX_BUF_SIZE 2048
#define USB_TX_MASK (USB_TX_BUF_SIZE - 1)
// HP3478A
#define HP_DISP_LEN 12 // 12 chars
// max str length required to fill 12 segments.
// Worst case: 12 chars + 12 dots/commas + 1 Null terminator = 25 bytes
#define HP_DISP_BUF_SIZE ((HP_DISP_LEN * 2) + 1)
#define DMM_OL_THRESHOLD 9.0e9 // HP sends +9.9999E+9 on overload
#define DMM_OL_NEG_THRESHOLD -9.0e9
#define CFG_ENTRY(member, dtype) {#member, offsetof(fw_config_t, member), dtype}
// Command system
typedef enum {
CMD_UNKNOWN = 0,
// Controller config
CMD_VER, // Get Firmware Version
CMD_HELP, // List commands
CMD_CFG_SET,
CMD_CFG_GET,
CMD_CFG_LIST,
CMD_SAVECFG, // Save configuration
CMD_RST, // Reset the controller
CMD_ADDR, // Set GPIB primary address
CMD_MODE, // Set Controller vs Device mode (we're always the controller)
CMD_TIMEOUT, // Set read timeouts
CMD_DMM_LOOP, // Toggle extra HP3478A features
// Data transport/formatting
CMD_READ, // Read data from bus
CMD_WRITE, // Write data to bus
CMD_AUTO, // Auto-read mode (Prologix header)
CMD_EOI, // Enables or disables the assertion of the EOI signal
CMD_EOS, // GPIB termination character
CMD_EOR, // End of receive
CMD_EOT_ENABLE, // the character to be appended to the USB output from the
// interface to the host
CMD_EOT_CHAR, // specific EOT char (e.g. \n or \r)
// GPIB Bus Management
CMD_TRG, // Group Execute Trigger (GET)
CMD_CLR, // Selected Device Clear (SDC)
CMD_DCL, // Device Clear (Universal - clears all)
CMD_SPOLL, // Serial Poll
CMD_SRQ, // Service Request check
CMD_STAT, // Status check
// Lower Level Bus Control
CMD_LOC, // Go To Local (Release remote control)
CMD_GTL, // Go To Local (GPIB command)
CMD_LLO, // Local Lockout (Disable front panel)
CMD_REN, // Remote Enable line
CMD_IFC, // Interface Clear (Bus Reset)
// HP3478A features
CMD_DISP, // Write on display
CMD_MATH, // MIN/MAX/AVG
CMD_ENV, // Temp/Hum sensor
CMD_CONT, // Continuity mode
CMD_TEMP, // Temperature mode
CMD_REL, // Relative mode
CMD_XOHM, // Extended Ohm range
CMD_DBM, // dBm
CMD_DIODE, // Diode test
CMD_AUTOHOLD, // Autohold (latch) reading
CMD_NORM // Normal functionality
} cmd_id_t;
typedef struct {
const char* name;
cmd_id_t id;
} cmd_entry_t;
// Modes/config
typedef enum {
AUTO_OFF = 0,
AUTO_ON = 1, // read after every write
AUTO_QUERY = 2, // read only if command ends in ?
// AUTO_CONT = 3 // continuous read (triggered by ++read)
} auto_mode_t;
typedef enum {
MODE_PASSTHROUGH = 0, // Standard USB-GPIB bridge
MODE_MENU, // User is cycling options on DMM display
MODE_FEAT_REL, // Relative Mode active
MODE_FEAT_AUTOHOLD, // Autohold
MODE_FEAT_CONT, // Continuity Mode active
MODE_FEAT_DIODE, // Diode test mode
MODE_FEAT_TEMP, // PT1000 Temp Mode active
MODE_FEAT_DBM, // Power ratio using a 50R impedance as ref
MODE_FEAT_XOHM, // Extended Ohms active
MODE_FEAT_STATS, // AVG/MIN/MAX
} work_mode_t;
// Menu/UI
typedef enum {
MENU_REL = 0,
MENU_AUTOHOLD,
MENU_CONT,
MENU_DIODE,
MENU_TEMP,
MENU_DBM,
MENU_XOHM,
MENU_STATS,
MENU_EXIT,
MENU_MAX_ITEMS
} menu_item_t;
// Sub-menu states
typedef enum {
SUBMENU_NONE = 0,
SUBMENU_TEMP_SENS, // step 1: sensor Type
SUBMENU_TEMP_WIRE, // step 2a: wire mode (skipped for Type K)
SUBMENU_TEMP_NTC // step 2b: NTC Value (Thermistor only)
} submenu_state_t;
// Logic
// Sensor Types
typedef enum {
SENS_PT1000 = 0,
SENS_THERMISTOR,
SENS_TYPE_K,
SENS_MAX_ITEMS
} temp_sensor_t;
typedef enum { WIRE_2W = 0, WIRE_4W, WIRE_MAX_ITEMS } wire_mode_t;
typedef enum {
// Generic
NTC_10K_3950 = 0, // Generic china 3950
NTC_10K_3435, // alt 10k
NTC_50K_3950, // alt 50k
NTC_100K_3950, // alt 100k
// YSI 44000
NTC_YSI_2252, // YSI 44004 (Mix B)
NTC_YSI_3K, // YSI 44005 (Mix B)
NTC_YSI_5K, // YSI 44007 (Mix B)
NTC_YSI_10K_A, // YSI 44006 (Mix H)
NTC_YSI_10K_B, // YSI 44016 (Mix B)
NTC_YSI_30K, // YSI 44008 (Mix H)
NTC_YSI_100K, // YSI 44011 (Mix H)
NTC_YSI_1MEG, // YSI 44015 (Mix H)
NTC_MAX_ITEMS
} ntc_preset_t;
typedef struct {
double r0; // R @ 25C
double beta; // beta coefficient (typ. 3000-4500)
const char* name; // display name
} ntc_def_t;
// Logic states
// GPIB session
typedef enum { SESSION_WRITE, SESSION_READ } session_mode_t;
typedef enum {
DIODE_STATE_OPEN = 0, // probes open
DIODE_STATE_CHECKING, // voltage @ diode range, checking stability
DIODE_STATE_SHORT, // voltage too low, silent
DIODE_STATE_DONE // chirped, latched silent
} diode_state_t;
typedef struct {
const char* cmd_func;
const char* cmd_range;
const char* cmd_digits;
const char* cmd_az;
char unit_str[5]; // "VDC", "OHM", etc.
} dmm_decoded_state_t;
// App state
typedef union {
struct {
double latched_val; // val currently frozen on the LCD
double candidate_val; // val we are currently testing for stability
uint8_t stable_count; // how many counts has the candidate been stable for
bool is_populated; // has a val ever been latched?
char unit[5];
} autohold;
struct {
double offset;
uint8_t stable_count;
char unit[5];
} rel;
struct {
double min;
double max;
double sum;
uint32_t count;
uint32_t disp_timer;
uint8_t view_mode;
char unit[5];
} stats;
struct {
double r1;
bool calibrated;
} xohm;
struct {
diode_state_t connected; // touchy?
uint32_t chirp_start; // when we began the touchy
} diode;
struct {
// we're using very fast ADC mode for cont, so throttle disp update
// although.. ideally this should be done globally somehow
uint32_t last_disp_update;
} cont;
// menu state (only used when in MODE_MENU)
struct {
uint32_t timer;
uint8_t layer; // submenu_state_t
uint8_t sub_pos; // position in submenu
} menu;
} mode_data_t;
typedef struct {
// Hardware State Flags
uint8_t usb_online : 1;
uint8_t usb_raw_prev : 1;
uint8_t env_sensor_present : 1;
uint8_t dmm_online : 1;
uint8_t has_saved_state : 1;
uint8_t tone_timer_pending : 1;
uint8_t dmm_loop : 1;
uint8_t reserved : 1;
uint32_t usb_timeout_cycles; // calculated from sys_cfg.usb_timeout_target_ms
// Timers
uint32_t usb_ts;
uint32_t env_last_read;
uint32_t last_poll_time;
uint32_t ignore_input_start_ts;
uint32_t tone_start_ts; // buzzer
uint32_t tone_duration;
// Logic
work_mode_t current_mode;
int menu_pos; // high-level menu position (REL, TEMP etc.)
// Config Selection
temp_sensor_t temp_sensor;
wire_mode_t temp_wire_mode;
ntc_preset_t temp_ntc_preset;
// Environmental Data
aht20_data current_env;
// DMM Restore
uint8_t saved_state_bytes[5];
// Display shadow buffer (cache)
char last_disp_sent[HP_DISP_BUF_SIZE];
// Unionized Mode Data
mode_data_t data;
} app_state_t;
typedef union {
// command processing
struct {
char line_buf[128];
char fmt_buf[128];
} cmd;
// general io ctx
struct {
// for gpib
char raw_data[256];
} io;
// display ctx
struct {
char full_cmd[64];
} disp;
uint8_t raw[256];
} app_scratchpad_t;
// Consts/LUTs
static const cmd_entry_t COMMAND_TABLE[] = {
// Controller config
{"ver", CMD_VER},
{"help", CMD_HELP},
{"?", CMD_HELP},
{"savecfg", CMD_SAVECFG},
{"config_set", CMD_CFG_SET}, // ++config_set name value
{"set", CMD_CFG_SET}, // Alias: ++set name value
{"config_get", CMD_CFG_GET}, // ++config_get name
{"get", CMD_CFG_GET}, // Alias: ++get name
{"config", CMD_CFG_LIST}, // ++config
{"rst", CMD_RST},
{"addr", CMD_ADDR}, // Set target GPIB address
{"mode", CMD_MODE}, // 0=Device, 1=Controller
{"tmo", CMD_TIMEOUT}, // Set read timeout
{"read_tmo_ms", CMD_TIMEOUT},
{"dmm_loop", CMD_DMM_LOOP}, // Toggle extra feats
// Protocol/formatting
{"auto", CMD_AUTO}, // Auto-read data after write
{"eoi", CMD_EOI}, // Enable/Disable EOI assert
{"eos", CMD_EOS},
{"eor", CMD_EOR},
{"eot_enable", CMD_EOT_ENABLE},
{"eot_char", CMD_EOT_CHAR},
// Common
{"read", CMD_READ},
{"write", CMD_WRITE},
{"trg", CMD_TRG}, // Trigger instrument (GET)
{"clr", CMD_CLR}, // Clear device buffer (SDC)
{"stat", CMD_STAT}, // Controller Status
// GPIB Bus Lines/States
{"dcl", CMD_DCL}, // "Device Clear" (Resets state of ALL devices)
{"spoll", CMD_SPOLL}, // "Serial Poll" (Read status byte)
{"srq", CMD_SRQ}, // Check "Service Request" line status
{"loc", CMD_LOC}, // Return to local (front panel) control
{"gtl", CMD_GTL}, // "Go To Local" message
{"llo", CMD_LLO}, // "Local Lockout" (Disables front panel buttons)
{"ren", CMD_REN}, // "Remote Enable"
{"ifc", CMD_IFC}, // "Interface Clear" (Hard bus reset)
// HP3478A
{"cont", CMD_CONT}, // Continuity Test
{"diode", CMD_DIODE}, // Diode Test
{"xohm", CMD_XOHM}, // Extended ohm
{"dbm", CMD_DBM}, // dBm
{"temp", CMD_TEMP}, // Temperature
{"rel", CMD_REL}, // Relative (Delta) measurement
{"math", CMD_MATH}, // MIN/MAX/AVG
{"disp", CMD_DISP}, // Set Display Text
{"env", CMD_ENV}, // Temp/Hum sensor
{"hold", CMD_AUTOHOLD}, // Autohold mode
{"norm", CMD_NORM}, // Reset to Normal/DC Volts
{NULL, CMD_UNKNOWN}};
// UI Strings
static const char* MENU_NAMES[] = {"REL", "AUTOHOLD", "CONT", "DIODE", "TEMP",
"DBM", "XOHM", "STATS", "EXIT"};
static const char* SENSOR_NAMES[] = {"PT1000", "THERM", "TYPE K"};
static const char* WIRE_NAMES[] = {"2-WIRE", "4-WIRE"};
// some common NTC defs
static const ntc_def_t NTC_DEFS[] = {
// Generic/China
{10000.0, 3950.0, "10K 3950"}, // black bead)
{10000.0, 3435.0, "10K 3435"}, // euro?
{50000.0, 3950.0, "50K 3950"}, // generic
{100000.0, 3950.0, "100K 3950"}, // generic
// From YSI datasheet
{2252.0, 3891.0, "2.252K YSI"}, // 44004
{3000.0, 3891.0, "3K YSI"}, // 44005
{5000.0, 3891.0, "5K YSI"}, // 44007
{10000.0, 3574.0, "10K YSI A"}, // Mix H (YSI 10k)
{10000.0, 3891.0, "10K YSI B"}, // Mix B (matches 2.2K curve)
{30000.0, 3810.0, "30K YSI"}, // 44008
{100000.0, 3988.0, "100K YSI"}, // 44011
{1000000.0, 4582.0, "1MEG YSI"} // 44015
};
// buzz
static const uint32_t ONLINE_NOTES[] = {3100, 80, 4200, 120};
// static const uint32_t OFFLINE_NOTES[] = {4200, 80, 3100, 120};
static const cfg_field_t CONFIG_MAP[] = {
// addressing
CFG_ENTRY(my_addr, CFG_TYPE_UINT8),
CFG_ENTRY(dmm_addr, CFG_TYPE_UINT8),
CFG_ENTRY(target_addr, CFG_TYPE_UINT8),
// protocol
CFG_ENTRY(eot_char, CFG_TYPE_UINT8),
CFG_ENTRY(eot_enable, CFG_TYPE_UINT8),
CFG_ENTRY(eoi_assert, CFG_TYPE_UINT8),
CFG_ENTRY(eos_mode, CFG_TYPE_UINT8),
CFG_ENTRY(eor_mode, CFG_TYPE_UINT8),
CFG_ENTRY(auto_read, CFG_TYPE_UINT8),
// timings (hw)
CFG_ENTRY(gpib_timeout_ms, CFG_TYPE_UINT32),
CFG_ENTRY(poll_interval_ms, CFG_TYPE_UINT32),
CFG_ENTRY(env_sensor_read_interval_ms, CFG_TYPE_UINT32),
CFG_ENTRY(dmm_recovery_delay_ms, CFG_TYPE_UINT32),
CFG_ENTRY(usb_debounce_connect_ms, CFG_TYPE_UINT32),
CFG_ENTRY(usb_debounce_disconnect_ms, CFG_TYPE_UINT32),
CFG_ENTRY(usb_timeout_target_ms, CFG_TYPE_UINT32),
// timings (ui)
CFG_ENTRY(menu_dot_interval_ms, CFG_TYPE_UINT32),
CFG_ENTRY(menu_commit_delay_ms, CFG_TYPE_UINT32),
CFG_ENTRY(menu_sublayer_delay_ms, CFG_TYPE_UINT32),
CFG_ENTRY(menu_debounce_ms, CFG_TYPE_UINT32),
CFG_ENTRY(menu_lockout_ms, CFG_TYPE_UINT32),
CFG_ENTRY(stats_cycle_time_ms, CFG_TYPE_UINT32),
CFG_ENTRY(cont_disp_update_ms, CFG_TYPE_UINT32),
CFG_ENTRY(diode_stable_ms, CFG_TYPE_UINT32),
// buzzer
CFG_ENTRY(buzzer_chirp_hz, CFG_TYPE_UINT32),
CFG_ENTRY(buzzer_chirp_ms, CFG_TYPE_UINT32),
CFG_ENTRY(buzzer_cont_hz, CFG_TYPE_UINT32),
// math/cal
CFG_ENTRY(rtd_a, CFG_TYPE_DOUBLE),
CFG_ENTRY(rtd_b, CFG_TYPE_DOUBLE),
CFG_ENTRY(rtd_r0, CFG_TYPE_DOUBLE),
CFG_ENTRY(cjc_fallback_temp, CFG_TYPE_DOUBLE),
CFG_ENTRY(cjc_self_heating_offset, CFG_TYPE_DOUBLE),
CFG_ENTRY(type_k_scale, CFG_TYPE_DOUBLE),
CFG_ENTRY(dbm_ref_z, CFG_TYPE_DOUBLE),
CFG_ENTRY(diode_th_short, CFG_TYPE_DOUBLE),
CFG_ENTRY(diode_th_open, CFG_TYPE_DOUBLE),
// thresholds
CFG_ENTRY(autohold_threshold, CFG_TYPE_DOUBLE),
CFG_ENTRY(autohold_change_req, CFG_TYPE_DOUBLE),
CFG_ENTRY(autohold_min_val, CFG_TYPE_DOUBLE),
CFG_ENTRY(cont_threshold_ohms, CFG_TYPE_DOUBLE),
// logic counts
CFG_ENTRY(autohold_stable_count, CFG_TYPE_UINT32),
CFG_ENTRY(rel_stable_count, CFG_TYPE_UINT32),
};
static const size_t CONFIG_MAP_SIZE = sizeof(CONFIG_MAP) / sizeof(cfg_field_t);
// Globals
// Flash config
__attribute__((section(".external"))) volatile fw_config_t flash_config = {
.magic = CONFIG_MAGIC,
.version = CONFIG_VERSION,
.my_addr = MY_ADDR,
.dmm_addr = DEFAULT_DMM_ADDR,
.target_addr = DEFAULT_DMM_ADDR,
// prologix std defaults
.auto_read = 0, // ++auto 0 (off)
.eoi_assert = true, // ++eoi 1 (assert EOI on write end)
.eos_mode = 0, // ++eos 0 (CR+LF appended to writes)
.eor_mode = 0, // ++eor 0 (terminates read on CR+LF)
.eot_enable = false, // ++eot_enable 0 (off)
.eot_char = 0, // ++eot_char 0
.gpib_timeout_ms = DEFAULT_GPIB_TIMEOUT_MS,
.poll_interval_ms = POLL_INTERVAL_MS,
.env_sensor_read_interval_ms = ENV_SENSOR_READ_INTERVAL_MS,
.dmm_recovery_delay_ms = DMM_RECOVERY_DELAY_MS,
.usb_debounce_connect_ms = USB_DEBOUNCE_CONNECT_MS,
.usb_debounce_disconnect_ms = USB_DEBOUNCE_DISCONNECT_MS,
.usb_timeout_target_ms = USB_TIMEOUT_TARGET_MS,
.menu_dot_interval_ms = MENU_DOT_INTERVAL_MS,
.menu_commit_delay_ms = MENU_COMMIT_DELAY_MS,
.menu_sublayer_delay_ms = MENU_SUBLAYER_DELAY_MS,
.menu_debounce_ms = MENU_DEBOUNCE_MS,
.menu_lockout_ms = MENU_LOCKOUT_MS,
.stats_cycle_time_ms = STATS_CYCLE_TIME_MS,
.cont_disp_update_ms = CONT_DISP_UPDATE_MS,
// Physics
.rtd_a = RTD_A,
.rtd_b = RTD_B,
.rtd_r0 = RTD_R0,
.cjc_fallback_temp = CJC_FALLBACK_TEMP,
.cjc_self_heating_offset = CJC_SELF_HEATING_OFFSET,
.type_k_scale = TYPE_K_SCALE,
.dbm_ref_z = DBM_REF_Z,
// Thresholds
.diode_th_short = DIODE_TH_SHORT,
.diode_th_open = DIODE_TH_OPEN,
.diode_stable_ms = DIODE_STABLE_MS,
// Buzzer
.buzzer_chirp_hz = BUZZER_CHIRP_HZ,
.buzzer_chirp_ms = BUZZER_CHIRP_MS,
.buzzer_cont_hz = BUZZER_CONT_HZ,
.autohold_threshold = AUTOHOLD_THRESHOLD,
.autohold_change_req = AUTOHOLD_CHANGE_REQ,
.autohold_min_val = AUTOHOLD_MIN_VAL,
.cont_threshold_ohms = CONT_THRESHOLD_OHMS,
.autohold_stable_count = AUTOHOLD_STABLE_COUNT,
.rel_stable_count = REL_STABLE_COUNT};
static fw_config_t sys_cfg;
// App state
static app_state_t app = {.current_mode = MODE_PASSTHROUGH,
.usb_online = false,
.dmm_online = false,
.has_saved_state = false,
.tone_timer_pending = false};
static app_scratchpad_t scratch;
// USB
volatile uint8_t usb_rx_buffer[USB_RX_BUF_SIZE];
volatile uint32_t usb_rx_head = 0;
volatile uint32_t usb_rx_tail = 0;
volatile uint8_t usb_tx_buffer[USB_TX_BUF_SIZE];
volatile uint32_t usb_tx_head = 0;
volatile uint32_t usb_tx_tail = 0;
static uint8_t cdc_line_coding[7] = {0x00, 0xC2, 0x01, 0x00, 0x00, 0x00, 0x08};
extern volatile uint8_t usb_debug; // DEBUG
// Audio state
volatile bool is_buzzer_pulsing = false;
static uint32_t current_buzz_freq = 0;
// LUT for GPIB writes
static uint32_t gpib_write_lut[256];
// systick
volatile uint32_t systick_millis;
static void systick_init(void) {
SysTick->CTLR = 0x0000;
SysTick->CMP = SysTick->CNT + SYSTICK_ONE_MILLISECOND;
systick_millis = 0;
SysTick->CTLR = SYSTICK_CTLR_STE | // Enable Counter
SYSTICK_CTLR_STIE | // Enable Interrupts
SYSTICK_CTLR_STCLK; // Set Clock Source to HCLK/1
NVIC_EnableIRQ(SysTick_IRQn);
}
void SysTick_Handler(void) __attribute__((interrupt));
void SysTick_Handler(void) {
SysTick->CMP = SysTick->CNT + SYSTICK_ONE_MILLISECOND;
SysTick->SR = 0;
systick_millis++;
}
// Config
static const cfg_field_t* find_config_field(const char* name) {
for (size_t i = 0; i < CONFIG_MAP_SIZE; i++) {
if (strcasecmp(CONFIG_MAP[i].name, name) == 0) {
return &CONFIG_MAP[i];
}
}
return NULL;
}
inline static void config_apply_to_app(void) {
app.usb_timeout_cycles =
((FUNCONF_SYSTEM_CORE_CLOCK / 1000 * sys_cfg.usb_timeout_target_ms) /
CYCLES_PER_LOOP);
app.dmm_loop = 1; // again, preferably read from config if someone wants this
// to be persistent
}
static void config_reset_defaults(void) {
sys_cfg.magic = CONFIG_MAGIC;
sys_cfg.version = CONFIG_VERSION;
sys_cfg.my_addr = MY_ADDR;
sys_cfg.dmm_addr = DEFAULT_DMM_ADDR;
sys_cfg.target_addr = DEFAULT_DMM_ADDR;
sys_cfg.auto_read = 0; // ++auto 0 (off)
sys_cfg.eoi_assert = true; // ++eoi 1 (assert EOI on write end)
sys_cfg.eos_mode = 0; // ++eos 0 (CR+LF appended to writes)
sys_cfg.eor_mode = 0; // ++eor 0 (terminates read on CR+LF)
sys_cfg.eot_enable = false; // ++eot_enable 0 (off)
sys_cfg.eot_char = 0; // ++eot_char 0
sys_cfg.gpib_timeout_ms = DEFAULT_GPIB_TIMEOUT_MS;
sys_cfg.poll_interval_ms = POLL_INTERVAL_MS;
sys_cfg.env_sensor_read_interval_ms = ENV_SENSOR_READ_INTERVAL_MS;
sys_cfg.dmm_recovery_delay_ms = DMM_RECOVERY_DELAY_MS;
sys_cfg.usb_debounce_connect_ms = USB_DEBOUNCE_CONNECT_MS;
sys_cfg.usb_debounce_disconnect_ms = USB_DEBOUNCE_DISCONNECT_MS;
sys_cfg.usb_timeout_target_ms = USB_TIMEOUT_TARGET_MS;
sys_cfg.menu_dot_interval_ms = MENU_DOT_INTERVAL_MS;
sys_cfg.menu_commit_delay_ms = MENU_COMMIT_DELAY_MS;
sys_cfg.menu_sublayer_delay_ms = MENU_SUBLAYER_DELAY_MS;
sys_cfg.menu_debounce_ms = MENU_DEBOUNCE_MS;
sys_cfg.menu_lockout_ms = MENU_LOCKOUT_MS;
sys_cfg.stats_cycle_time_ms = STATS_CYCLE_TIME_MS;
sys_cfg.cont_disp_update_ms = CONT_DISP_UPDATE_MS;
// Physics
sys_cfg.rtd_a = RTD_A;
sys_cfg.rtd_b = RTD_B;
sys_cfg.rtd_r0 = RTD_R0;
sys_cfg.cjc_fallback_temp = CJC_FALLBACK_TEMP;
sys_cfg.cjc_self_heating_offset = CJC_SELF_HEATING_OFFSET;
sys_cfg.type_k_scale = TYPE_K_SCALE;
sys_cfg.dbm_ref_z = DBM_REF_Z;
// Thresholds
sys_cfg.diode_th_short = DIODE_TH_SHORT;
sys_cfg.diode_th_open = DIODE_TH_OPEN;
sys_cfg.diode_stable_ms = DIODE_STABLE_MS;
sys_cfg.autohold_threshold = AUTOHOLD_THRESHOLD;
sys_cfg.autohold_change_req = AUTOHOLD_CHANGE_REQ;
sys_cfg.autohold_min_val = AUTOHOLD_MIN_VAL;
sys_cfg.cont_threshold_ohms = CONT_THRESHOLD_OHMS;
// Buzzer
sys_cfg.buzzer_chirp_hz = BUZZER_CHIRP_HZ;
sys_cfg.buzzer_chirp_ms = BUZZER_CHIRP_MS;
sys_cfg.buzzer_cont_hz = BUZZER_CONT_HZ;
sys_cfg.autohold_stable_count = AUTOHOLD_STABLE_COUNT;
sys_cfg.rel_stable_count = REL_STABLE_COUNT;
}
static void config_save(void) {
uint16_t* source_ptr = (uint16_t*)&sys_cfg;
uint32_t start_addr = (uint32_t)&flash_config;
int total_bytes = sizeof(fw_config_t);
int total_halfwords = (total_bytes + 1) / 2;
int pages_to_erase = (total_bytes + ERASE_PAGE_SIZE - 1) / ERASE_PAGE_SIZE;
printf("config: saving %d bytes to %08lx\n", total_bytes, start_addr);
// unlock flash
if (FLASH->CTLR & CR_LOCK_Set) {
FLASH->KEYR = FLASH_KEY1;
FLASH->KEYR = FLASH_KEY2;
}
// erase loop
for (int p = 0; p < pages_to_erase; p++) {
uint32_t page_addr = start_addr + (p * ERASE_PAGE_SIZE);
FLASH->CTLR &= ~CR_PAGE_ER; // clear
FLASH->CTLR |= CR_PAGE_ER; // set page erase
FLASH->ADDR = page_addr;
FLASH->CTLR |= CR_STRT_Set; // start erase
while (FLASH->STATR & SR_BSY); // wait
if (FLASH->STATR & SR_WRPRTERR) {
printf("config: erase error (WPR)\n");
FLASH->CTLR |= CR_LOCK_Set;
return;
}
FLASH->CTLR &= ~CR_PAGE_ER; // clear erase flag
}
// slower than fast program but we rarely do this, so meh
FLASH->CTLR |= CR_PG_Set;
for (int i = 0; i < total_halfwords; i++) {
uint32_t write_addr = start_addr + (i * 2);
*(__IO uint16_t*)write_addr = source_ptr[i];
while (FLASH->STATR & SR_BSY); // wait
if (FLASH->STATR & SR_WRPRTERR || FLASH->STATR & FLASH_STATR_PGERR) {
printf("config: write error @ %08lx\n", write_addr);
break;
}
}
FLASH->CTLR &= ~CR_PG_Set; // disable PG
FLASH->CTLR |= CR_LOCK_Set; // lock
printf("config: saved\n");
}
static void config_init(void) {
const fw_config_t* src = (const fw_config_t*)&flash_config;
if (src->magic == CONFIG_MAGIC) {
memcpy(&sys_cfg, src, sizeof(fw_config_t));
printf("config: loaded from flash\n");
} else {
printf("config: flash invalid/blank, loading defaults\n");
config_reset_defaults();
// autosave defaults?
// config_save();
}
}
// helpers
static bool starts_with_nocase(const char* str, const char* prefix) {
while (*prefix) {
if (tolower((unsigned char)*str) != tolower((unsigned char)*prefix)) {
return false;
}
str++;
prefix++;
}
return true;
}
static char* skip_spaces(char* str) {
while (*str && isspace((unsigned char)*str)) {
str++;
}
return str;
}
static cmd_id_t parse_command_id(const char* cmd) {
for (int i = 0; COMMAND_TABLE[i].name != NULL; i++) {
if (starts_with_nocase(cmd, COMMAND_TABLE[i].name)) {
int len = strlen(COMMAND_TABLE[i].name);
char next = cmd[len];
if (next == 0 || isspace((unsigned char)next)) {
return COMMAND_TABLE[i].id;
}
}
}
return CMD_UNKNOWN;
}
static void double_to_str(char* buf, size_t buf_size, double val, int prec) {
if (buf_size == 0) return;
buf[0] = '\0';
size_t offset = 0;
if (isnan(val)) {
if (buf_size > 3) strcpy(buf, "NAN");
return;
}
if (isinf(val)) {
if (buf_size - offset > 3) strcpy(buf + offset, "INF");
return;
}
if (signbit(val)) {
if (offset < buf_size - 1) buf[offset++] = '-';
val = -val;
}
if (val > (double)UINT32_MAX) {
if (buf_size > 3) strcpy(buf, "OVFL"); // overflow
return;
}
if (prec < 0) prec = 0;
if (prec > 9) prec = 9; // limit precision
// calc multiplier
uint32_t multiplier = 1;
for (int i = 0; i < prec; i++) multiplier *= 10;
uint32_t int_part = (uint32_t)val;
// fractional component
double remainder = val - (double)int_part;
// scale and round the remainder
remainder = (remainder * (double)multiplier) + 0.5;
uint32_t frac_part = (uint32_t)remainder;
// handle rounding rollover
if (frac_part >= multiplier) {
frac_part = 0;
int_part++;
// if int_part overflows here it wraps to 0
}
// print integer part
int res = snprintf(buf + offset, buf_size - offset, "%lu", int_part);
if (res < 0 || (size_t)res >= buf_size - offset) {
buf[buf_size - 1] = '\0';
return;
}
offset += (size_t)res;
// print decimal point and fraction
if (prec > 0 && offset < buf_size - 1) {
buf[offset++] = '.';
uint64_t divider = multiplier / 10;
while (divider > 0 && offset < buf_size - 1) {
uint32_t digit = frac_part / divider;
buf[offset++] = (char)('0' + digit);
frac_part %= divider;
divider /= 10;
}
}
buf[offset] = '\0';
}
// "Note that period, comma, and semicolon go between characters"
static int count_non_visual_chars(const char* s) {
int c = 0;
while (*s) {
if (*s == '.' || *s == ',' || *s == ';') c++;
s++;
}
return c;
}
static void format_metric_value(char* buffer, size_t buf_len, double val,
const char* unit, int auto_scale) {
// must hold 12 visible chars + 1 null.
if (buf_len <= HP_DISP_LEN) return;
memset(buffer, ' ', HP_DISP_LEN);
buffer[HP_DISP_LEN] = '\0';
// scale
double scaled = val;
double abs_val = fabs(val);
char suffix = 0;
if (auto_scale) {
if (abs_val >= 1.0e9) {
scaled *= 1.0e-9;
suffix = 'G';
} else if (abs_val >= 1.0e6) {
scaled *= 1.0e-6;
suffix = 'M';
} else if (abs_val >= 1.0e3) {
scaled *= 1.0e-3;
suffix = 'K';
}
}
double abs_s = fabs(scaled);
// unit + suffix
size_t unit_len = strlen(unit);
size_t suffix_len = (suffix != 0) ? 1 : 0;
size_t meta_vis_len = unit_len + suffix_len;
if (meta_vis_len > (HP_DISP_LEN - 3)) {
// truncate unit?
}
int int_digits = 1;
if (abs_s >= 1.0) {
double t = abs_s;
while (t >= 10.0) {
t /= 10.0;
int_digits++;
}
}
bool is_neg = (scaled < 0.0);
// visual slots needed for non-decimal part (sign + ints + space separator)
int separator = (meta_vis_len > 0) ? 1 : 0;
int reserved_vis = is_neg + int_digits + separator + meta_vis_len;
// calculate allowed decimals (visual)
int allowed_prec = HP_DISP_LEN - reserved_vis;
if (allowed_prec < 0) allowed_prec = 0;
int desired_prec = 5;
if (abs_s >= 10000.0)
desired_prec = 1;
else if (abs_s >= 1000.0)
desired_prec = 2;
else if (abs_s >= 100.0)
desired_prec = 3;
else if (abs_s >= 10.0)
desired_prec = 4;
int final_prec = (desired_prec < allowed_prec) ? desired_prec : allowed_prec;
// render num
char num_buf[32];
double_to_str(num_buf, sizeof(num_buf), scaled, final_prec);
// calc padding
int num_bytes = strlen(num_buf);
int num_dots = count_non_visual_chars(num_buf);
int num_vis_len = num_bytes - num_dots;
// total visual slots used so far
int total_vis_used = num_vis_len + meta_vis_len;
// to push unit to the right edge
int spaces_needed = HP_DISP_LEN - total_vis_used;
if (spaces_needed < 1 && meta_vis_len > 0)
spaces_needed = 1; // enforce 1 space if possible?
if (total_vis_used + spaces_needed > HP_DISP_LEN) {
// crunch: if overflow (very large number), reduce spaces
spaces_needed = HP_DISP_LEN - total_vis_used;
if (spaces_needed < 0) spaces_needed = 0;
}
// [number] [spaces] [suffix] [unit]
// num
strcpy(buffer, num_buf);
// spaces
int current_len = strlen(buffer);
for (int i = 0; i < spaces_needed; i++) {
buffer[current_len++] = ' ';
}
buffer[current_len] = '\0';
// suffix
if (suffix) {
buffer[current_len++] = suffix;
buffer[current_len] = '\0';
}
// unit
if (unit_len > 0) {
strcat(buffer, unit);
}
}
static double parse_double(const char* s) {
double mantissa = 0.0;
int exponent = 0;
int sign = 1;
bool decimal_seen = false;
int decimal_counts = 0;
// skip whitespace
while (*s == ' ') s++;
// handle sign
if (*s == '+') {
s++;
} else if (*s == '-') {
sign = -1;
s++;
}
// parse Mantissa as pure int
while (*s) {
if (*s >= '0' && *s <= '9') {
mantissa = (mantissa * 10.0) + (*s - '0');
if (decimal_seen) {
decimal_counts++;
}
} else if (*s == '.') {
decimal_seen = true;
} else if (*s == 'E' || *s == 'e') {
s++;
exponent = atoi(s);
break;
} else {
break;
}
s++;
}
exponent -= decimal_counts;
double power = 1.0;
int e_abs = abs(exponent);
while (e_abs-- > 0) power *= 10.0;
if (exponent > 0) {
mantissa *= power;
} else {
mantissa /= power;
}
return mantissa * sign;
}
static void decode_dmm_state_bytes(const uint8_t* state_bytes,
dmm_decoded_state_t* out) {
uint8_t b1 = state_bytes[0];
uint8_t b2 = state_bytes[1];
// decode function & unit
switch ((b1 >> 5) & 0x07) {
case 2:
out->cmd_func = HP3478A_FUNC_AC_VOLTS;
strcpy(out->unit_str, "VAC");
break;
case 3:
out->cmd_func = HP3478A_FUNC_OHMS_2WIRE;
strcpy(out->unit_str, "OHM");
break;
case 4:
out->cmd_func = HP3478A_FUNC_OHMS_4WIRE;
strcpy(out->unit_str, "OHM");
break;
case 5:
out->cmd_func = HP3478A_FUNC_DC_CURRENT;
strcpy(out->unit_str, "ADC");
break;
case 6:
out->cmd_func = HP3478A_FUNC_AC_CURRENT;
strcpy(out->unit_str, "AAC");
break;
case 7:
out->cmd_func = HP3478A_FUNC_OHMS_EXT;
strcpy(out->unit_str, "OHM");
break;
default: // case 1 or anything else
out->cmd_func = HP3478A_FUNC_DC_VOLTS;
strcpy(out->unit_str, "VDC");
break;
}
// decode range (bits 4-2) + autorange (byte 2 bit 1)
if (b2 & 0x02) {
out->cmd_range = HP3478A_RANGE_AUTO;
} else {
switch ((b1 >> 2) & 0x07) {
case 1:
out->cmd_range = HP3478A_RANGE_NEG_2;
break;
case 2:
out->cmd_range = HP3478A_RANGE_NEG_1;
break;
case 3:
out->cmd_range = HP3478A_RANGE_0;
break;
case 4:
out->cmd_range = HP3478A_RANGE_1;
break;
case 5:
out->cmd_range = HP3478A_RANGE_2;
break;
case 6:
out->cmd_range = HP3478A_RANGE_3;
break;
case 7:
out->cmd_range = HP3478A_RANGE_4;
break;
default:
out->cmd_range = HP3478A_RANGE_0;
break;
}
}
// decode digits (bits 1-0)
switch (b1 & 0x03) {
case 2:
out->cmd_digits = HP3478A_DIGITS_4_5;
break;
case 3:
out->cmd_digits = HP3478A_DIGITS_3_5;
break;
default:
out->cmd_digits = HP3478A_DIGITS_5_5;
break;
}
// decode autozero (byte 2 bit 2)
out->cmd_az = (b2 & 0x04) ? HP3478A_AUTOZERO_ON : HP3478A_AUTOZERO_OFF;
}
// constructs the base configuration string (F R N Z) from decoded state
static void build_restoration_string(char* buffer,
const dmm_decoded_state_t* state) {
strcpy(buffer, HP3478A_DISP_NORMAL);
strcat(buffer, state->cmd_func);
strcat(buffer, state->cmd_range);
strcat(buffer, state->cmd_digits);
strcat(buffer, state->cmd_az);
}
static bool is_query(const char* cmd) {
if (!cmd || !*cmd) return false;
size_t len = strlen(cmd);
while (len > 0 && isspace((unsigned char)cmd[len - 1])) {
len--;
}
if (len > 0 && cmd[len - 1] == '?') return true;
return false;
}
#ifdef GPIB_DEBUG
static void gpib_dump_state(const char* context) {
uint8_t d = 0;
if (!GPIB_READ(PIN_DIO1)) d |= 0x01;
if (!GPIB_READ(PIN_DIO2)) d |= 0x02;
if (!GPIB_READ(PIN_DIO3)) d |= 0x04;
if (!GPIB_READ(PIN_DIO4)) d |= 0x08;
if (!GPIB_READ(PIN_DIO5)) d |= 0x10;
if (!GPIB_READ(PIN_DIO6)) d |= 0x20;
if (!GPIB_READ(PIN_DIO7)) d |= 0x40;
if (!GPIB_READ(PIN_DIO8)) d |= 0x80;
printf("\n[GPIB DUMP] %s\n", context);
printf(" M: ATN=%d IFC=%d REN=%d EOI=%d | S: SRQ=%d\n", GPIB_READ(PIN_ATN),
GPIB_READ(PIN_IFC), GPIB_READ(PIN_REN), GPIB_READ(PIN_EOI),
GPIB_READ(PIN_SRQ));
printf(" H: DAV=%d NRFD=%d NDAC=%d\n", GPIB_READ(PIN_DAV),
GPIB_READ(PIN_NRFD), GPIB_READ(PIN_NDAC));
printf(" D: 0x%02X\n", d);
}
#else
#define gpib_dump_state(x) ((void)0)
#endif
inline static void gpib_write_data(uint8_t b) {
GPIOB->BSHR = gpib_write_lut[b];
}
inline static uint8_t gpib_read_data(void) {
// read all 16 pins, invert (gpib is active low)
uint32_t r = ~(GPIOB->INDR);
uint8_t b = 0;
// parallel extraction
b |= (r >> SHIFT_GRP_9) & MASK_GRP_9; // handles D1 & D6
b |= (r >> SHIFT_GRP_7) & MASK_GRP_7; // handles D2 & D7
b |= (r >> SHIFT_D3) & (1 << 2);
b |= (r >> SHIFT_D4) & (1 << 3);
b |= (r >> SHIFT_D5) & (1 << 4);
b |= (r >> SHIFT_D8) & (1 << 7);
return b;
}
inline static int gpib_wait_pin(int pin, int expected_state) {
uint32_t start = millis();
while (GPIB_READ(pin) != expected_state) {
if ((millis() - start) > sys_cfg.gpib_timeout_ms) {
#ifdef GPIB_DEBUG
// Print which specific pin failed
char* pin_name = "UNKNOWN";
if (pin == PIN_NRFD)
pin_name = "NRFD";
else if (pin == PIN_NDAC)
pin_name = "NDAC";
else if (pin == PIN_DAV)
pin_name = "DAV";
printf("[GPIB ERR] Timeout waiting for %s to be %d\n", pin_name,
expected_state);
gpib_dump_state("TIMEOUT STATE");
#endif
return -1;
}
}
return 0;
}
static int gpib_write_byte(uint8_t data, int assert_eoi) {
#ifdef GPIB_DEBUG
// printf("[TX] 0x%02X (EOI=%d)... ", data, assert_eoi);
#endif
// wait for listeners to be ready
if (gpib_wait_pin(PIN_NRFD, 1) < 0) {
return -1;
}
gpib_write_data(data);
// assert EOI if this is the last byte
if (assert_eoi) {
GPIB_ASSERT(PIN_EOI);
}
Delay_Us(1); // T1
GPIB_ASSERT(PIN_DAV);
// wait for listeners ack
if (gpib_wait_pin(PIN_NDAC, 1) < 0) {
GPIB_RELEASE(PIN_DAV);
GPIB_RELEASE(PIN_EOI);
#ifdef GPIB_DEBUG
printf("NDAC stuck LOW, (device didn't accept)\n");
#endif
return -2;
}
GPIB_RELEASE(PIN_DAV);
GPIB_RELEASE(PIN_EOI);
// float bus
gpib_write_data(0x00);
return 0;
}
static int gpib_read_byte(uint8_t* data, bool* eoi_asserted) {
// sssert busy state
GPIB_ASSERT(PIN_NDAC); // not accepted yet
GPIB_ASSERT(PIN_NRFD); // not ready yet
// float data lines
gpib_write_data(0x00);
// Delay_Us(10);
// signal ready for data
GPIB_RELEASE(PIN_NRFD);
// wait for talker to assert DAV
if (gpib_wait_pin(PIN_DAV, 0) < 0) {
GPIB_RELEASE(PIN_NDAC);
GPIB_RELEASE(PIN_NRFD);
#ifdef GPIB_DEBUG
printf("[GPIB] Read timeout waiting for DAV Low (Talker not ready)\n");
#endif
return -1; // timeout
}
Delay_Us(1); // T2
// read data and EOI status
*data = gpib_read_data();
*eoi_asserted = (GPIB_READ(PIN_EOI) == 0); // active LOW
// signal not ready (processing data)
GPIB_ASSERT(PIN_NRFD);
// signal data accepted
GPIB_RELEASE(PIN_NDAC);
// wait for talker to release DAV
if (gpib_wait_pin(PIN_DAV, 1) < 0) {
GPIB_RELEASE(PIN_NRFD);
#ifdef GPIB_DEBUG
printf("[GPIB] Read timeout waiting for DAV High (Talker stuck)\n");
#endif
return -2; // timeout
}
// prepare for next byte
GPIB_ASSERT(PIN_NDAC);
return 0;
}
// Sets up Talker/Listener for data transfer
static int gpib_start_session(uint8_t target_addr, session_mode_t mode) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
// Unlisten everyone first to clear bus state
if (gpib_write_byte(GPIB_CMD_UNL, 0) < 0) {
GPIB_RELEASE(PIN_ATN);
return -1;
}
uint8_t talker = (mode == SESSION_WRITE) ? MY_ADDR : target_addr;
uint8_t listener = (mode == SESSION_WRITE) ? target_addr : MY_ADDR;
// Untalk, Set Talker, Set Listener
if (gpib_write_byte(GPIB_CMD_UNT, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_TAD | talker, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_LAD | listener, 0) < 0) goto err;
if (mode == SESSION_READ) {
gpib_write_data(0x00); // Float Data
GPIB_ASSERT(PIN_NDAC); // Drive LOW (Not Accepted)
GPIB_ASSERT(PIN_NRFD); // Drive LOW (Not Ready)
}
GPIB_RELEASE(PIN_ATN); // Switch to Data Mode
return 0;
err:
GPIB_RELEASE(PIN_ATN);
return -1;
}
// Bus management
// Assert Interface Clear (IFC)
static void gpib_interface_clear(void) {
GPIB_ASSERT(PIN_IFC);
Delay_Us(150); // IEEE-488 requires >100us
GPIB_RELEASE(PIN_IFC);
}
// Control Remote Enable (REN)
static void gpib_remote_enable(int enable) {
if (enable) {
GPIB_ASSERT(PIN_REN);
} else {
GPIB_RELEASE(PIN_REN);
}
}
// Check SRQ Line (Active Low)
inline static int gpib_check_srq(void) { return !GPIB_READ(PIN_SRQ); }
// Universal Commands (Affects All Devices)
// Universal Device Clear (DCL)
// Resets logic of ALL devices on the bus
static int gpib_universal_clear(void) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
if (gpib_write_byte(GPIB_CMD_DCL, 0) < 0) {
GPIB_RELEASE(PIN_ATN);
return -1;
}
GPIB_RELEASE(PIN_ATN);
return 0;
}
// Local Lockout (LLO)
// Disables front panel "Local" buttons on all devices
static int gpib_local_lockout(void) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
// LLO is universal, no addressing needed
if (gpib_write_byte(GPIB_CMD_LLO, 0) < 0) {
GPIB_RELEASE(PIN_ATN);
return -1;
}
GPIB_RELEASE(PIN_ATN);
return 0;
}
// Addressed cmds
// Selected Device Clear (SDC)
// Resets logic of ONLY the targeted device
static int gpib_device_clear(uint8_t addr) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
if (gpib_write_byte(GPIB_CMD_UNL, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_LAD | addr, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_SDC, 0) < 0) goto err;
GPIB_RELEASE(PIN_ATN);
return 0;
err:
GPIB_RELEASE(PIN_ATN);
return -1;
}
// Group Execute Trigger (GET)
// Triggers the device to take a measurement
static int gpib_trigger(uint8_t addr) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
if (gpib_write_byte(GPIB_CMD_UNL, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_LAD | addr, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_GET, 0) < 0) goto err;
GPIB_RELEASE(PIN_ATN);
return 0;
err:
GPIB_RELEASE(PIN_ATN);
return -1;
}
// Go To Local (GTL)
// Addresses a specific device and restores Front Panel control
// (Keeps REN asserted for other devices on the bus)
static int gpib_go_to_local(uint8_t addr) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
if (gpib_write_byte(GPIB_CMD_UNL, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_LAD | addr, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_GTL, 0) < 0) goto err;
GPIB_RELEASE(PIN_ATN);
return 0;
err:
GPIB_RELEASE(PIN_ATN);
return -1;
}
// Serial Poll
// Reads the Status Byte (STB) from the device
static int gpib_serial_poll(uint8_t addr, uint8_t* status) {
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
// setupo seq: UNL -> SPE -> LAD(Me) -> TAD(Target)
if (gpib_write_byte(GPIB_CMD_UNL, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_SPE, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_LAD | MY_ADDR, 0) < 0) goto err;
if (gpib_write_byte(GPIB_CMD_TAD | addr, 0) < 0) goto err;
gpib_write_data(0x00); // Float data lines
GPIB_ASSERT(PIN_NDAC); // Busy / Not Accepted
GPIB_ASSERT(PIN_NRFD); // Busy / Not Ready
GPIB_RELEASE(PIN_ATN); // Handover to data mode
bool eoi;
if (gpib_read_byte(status, &eoi) < 0) {
goto err_data;
}
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
// return to cmd mode
GPIB_RELEASE(PIN_NRFD);
GPIB_RELEASE(PIN_NDAC);
// end seq: SPD -> UNT
gpib_write_byte(GPIB_CMD_SPD, 0);
gpib_write_byte(GPIB_CMD_UNT, 0);
GPIB_RELEASE(PIN_ATN);
return 0;
err_data:
// if read failed, assert ATN and release those lines
GPIB_ASSERT(PIN_ATN);
Delay_Us(1);
GPIB_RELEASE(PIN_NRFD);
GPIB_RELEASE(PIN_NDAC);
err:
// just ensure we don't leave the device in spoll mode
gpib_write_byte(GPIB_CMD_SPD, 0);
gpib_write_byte(GPIB_CMD_UNT, 0);
GPIB_RELEASE(PIN_ATN);
return -1;
}
// Data transfer
// Send string to device (handles CRLF escape sequences)
static int gpib_send(uint8_t addr, const char* str) {
if (gpib_start_session(addr, SESSION_WRITE) < 0) return -1;
int len = strlen(str);
// EOS mode determines what we ADD to the string
const char* suffix = "";
if (sys_cfg.eos_mode == 0)
suffix = "\r\n"; // CRLF
else if (sys_cfg.eos_mode == 1)
suffix = "\r"; // CR
else if (sys_cfg.eos_mode == 2)
suffix = "\n"; // LF
// EOS 3 = none
int suffix_len = strlen(suffix);
int total_len = len + suffix_len;
for (int i = 0; i < total_len; i++) {
uint8_t b = (i < len) ? str[i] : suffix[i - len];
// assert EOI on last byte ONLY if ++eoi 1 (eoi_assert) is set
int is_last = (i == total_len - 1);
int trigger_eoi = (sys_cfg.eoi_assert && is_last);
if (gpib_write_byte(b, trigger_eoi) < 0) {
// error cleanup
GPIB_ASSERT(PIN_ATN);
gpib_write_byte(GPIB_CMD_UNL, 0);
GPIB_RELEASE(PIN_ATN);
return -1;
}
}
// normal cleanup
GPIB_ASSERT(PIN_ATN);
gpib_write_byte(GPIB_CMD_UNL, 0);
GPIB_RELEASE(PIN_ATN);
return 0;
}
// Receive string from device
static int gpib_receive(uint8_t addr, char* buf, int max_len) {
if (gpib_start_session(addr, SESSION_READ) < 0) return -1;
int count = 0;
bool eoi = false;
uint8_t byte;
int effective_max = max_len - 2;
while (count < effective_max) {
if (gpib_read_byte(&byte, &eoi) < 0) break;
buf[count++] = (char)byte;
// hw EOI always stops the read immediately
if (eoi) break;
bool match = false;
char c = (char)byte;
// buf[count-1] is 'c'. buf[count-2] is prev.
char prev = (count >= 2) ? buf[count - 2] : 0;
char prev2 = (count >= 3) ? buf[count - 3] : 0;
switch (sys_cfg.eor_mode) {
case 0: // CR + LF
if (prev == '\r' && c == '\n') match = true;
break;
case 1: // CR
if (c == '\r') match = true;
break;
case 2: // LF
if (c == '\n') match = true;
break;
case 3: // none?
match = false;
break;
case 4: // LF + CR
if (prev == '\n' && c == '\r') match = true;
break;
case 5: // ETX (0x03)
if (c == 0x03) match = true;
break;
case 6: // CR + LF + ETX
if (prev2 == '\r' && prev == '\n' && c == 0x03) match = true;
break;
case 7: // EOI signal only
match = false;
break;
}
if (match) break;
}
// append USB EOT char if enabled
if (sys_cfg.eot_enable) {
buf[count++] = (char)sys_cfg.eot_char;
}
buf[count] = 0; // null terminate
// ensure listeners are open before asserting ATN
GPIB_RELEASE(PIN_NDAC);
GPIB_RELEASE(PIN_NRFD);
// cleanup: ATN -> UNT
GPIB_ASSERT(PIN_ATN);
gpib_write_byte(GPIB_CMD_UNT, 0);
GPIB_RELEASE(PIN_ATN);
return count;
}
// does not stop on newline and does not NULL terminate
static int gpib_receive_binary(uint8_t addr, char* buf, int expected_len) {
if (gpib_start_session(addr, SESSION_READ) < 0) return -1;
int count = 0;
bool eoi = false;
uint8_t byte;
// run until we have the expected count
while (count < expected_len) {
if (gpib_read_byte(&byte, &eoi) < 0) break; // hw timeout
buf[count++] = byte;
// only stop on EOI. Ignore '\n' because this is binary data.
if (eoi) break;
}
// ensure listeners are open before asserting ATN
GPIB_RELEASE(PIN_NDAC);
GPIB_RELEASE(PIN_NRFD);
// cleanup: ATN -> UNT
GPIB_ASSERT(PIN_ATN);
gpib_write_byte(GPIB_CMD_UNT, 0);
GPIB_RELEASE(PIN_ATN);
return count;
}
static void gpib_init(void) {
// calculate BSHR for the DIO lines
for (int i = 0; i < 256; i++) {
gpib_write_lut[i] =
CALC_PIN_BSHR(i, 0, PIN_POS_D1) | CALC_PIN_BSHR(i, 1, PIN_POS_D2) |
CALC_PIN_BSHR(i, 2, PIN_POS_D3) | CALC_PIN_BSHR(i, 3, PIN_POS_D4) |
CALC_PIN_BSHR(i, 4, PIN_POS_D5) | CALC_PIN_BSHR(i, 5, PIN_POS_D6) |
CALC_PIN_BSHR(i, 6, PIN_POS_D7) | CALC_PIN_BSHR(i, 7, PIN_POS_D8);
}
// float all control lines
GPIB_RELEASE(PIN_EOI);
GPIB_RELEASE(PIN_REN);
GPIB_RELEASE(PIN_ATN);
GPIB_RELEASE(PIN_IFC);
GPIB_RELEASE(PIN_DAV);
GPIB_RELEASE(PIN_NDAC);
GPIB_RELEASE(PIN_NRFD);
// configure control lines as open-drain outputs
funPinMode(PIN_EOI, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_REN, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_ATN, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_IFC, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DAV, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_NDAC, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_NRFD, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
// float data lines
gpib_write_data(0x00);
// data lines
funPinMode(PIN_DIO1, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO2, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO3, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO4, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO5, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO6, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO7, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
funPinMode(PIN_DIO8, GPIO_Speed_50MHz | GPIO_CNF_OUT_OD);
// SRQ is input with pull-up
funPinMode(PIN_SRQ, GPIO_CNF_IN_PUPD);
funDigitalWrite(PIN_SRQ, 1);
// clr
gpib_interface_clear();
}
// ------------------------------------
static void buzzer_init(void) {
funPinMode(PIN_BUZZ, GPIO_Speed_50MHz | GPIO_CNF_OUT_PP);
funDigitalWrite(PIN_BUZZ, 0);
RCC->APB1PCENR |= RCC_TIM2EN;
TIM2->PSC = (FUNCONF_SYSTEM_CORE_CLOCK / 1000000) - 1;
TIM2->ATRLR = 250;
TIM2->DMAINTENR |= TIM_UIE;
NVIC_EnableIRQ(TIM2_IRQn);
TIM2->CTLR1 |= TIM_CEN;
}
static void buzzer_hw_set(uint32_t freq_hz) {
if (freq_hz == 0) {
is_buzzer_pulsing = false;
return;
}
if (current_buzz_freq != freq_hz) {
current_buzz_freq = freq_hz;
int reload_val = (int)(1000000UL / (2 * freq_hz));
TIM2->ATRLR = reload_val;
TIM2->CNT = 0; // reset phase only on CHANGE
}
is_buzzer_pulsing = true;
}
void TIM2_IRQHandler(void) __attribute__((interrupt));
void TIM2_IRQHandler(void) {
if (TIM2->INTFR & TIM_UIF) {
// clr the flag
TIM2->INTFR = (int)~TIM_UIF;
if (is_buzzer_pulsing) {
// Toggle PC13
if (GPIOC->OUTDR & (1 << 13)) {
GPIOC->BSHR = (1 << (16 + 13)); // Reset (Low)
} else {
GPIOC->BSHR = (1 << 13); // Set (High)
}
} else {
// ensure low when inactive
if (GPIOC->OUTDR & (1 << 13)) {
GPIOC->BSHR = (1 << (16 + 13));
}
}
}
}
static void tone_nb(int freq, uint32_t duration_ms) {
buzzer_hw_set(freq);
if (freq > 0) {
app.tone_start_ts = millis();
app.tone_duration = duration_ms;
app.tone_timer_pending = true;
}
}
void play_tune(const uint32_t* tune) {
// Hardcoded to 4 elements (2 notes) for speed/simplicity
for (int i = 0; i < 4; i += 2) {
buzzer_hw_set(tune[i]);
Delay_Ms(tune[i + 1]);
buzzer_hw_set(0);
Delay_Ms(30);
}
}
// ------
// USB
int HandleSetupCustom(struct _USBState* ctx, int setup_code) {
if (ctx->USBFS_SetupReqType & USB_REQ_TYP_CLASS) {
switch (setup_code) {
case 0x20: // CDC_SET_LINE_CODING
case 0x21: // CDC_GET_LINE_CODING
ctx->pCtrlPayloadPtr = cdc_line_coding;
return 7;
case 0x22: // CDC_SET_CONTROL_LINE_STATE
return 0;
}
}
return -1;
}
int HandleInRequest(struct _USBState* ctx __attribute__((unused)),
int endp __attribute__((unused)),
uint8_t* data __attribute__((unused)),
int len __attribute__((unused))) {
return 0;
}
void HandleDataOut(struct _USBState* ctx, int endp, uint8_t* data, int len) {
if (endp == 0) {
ctx->USBFS_SetupReqLen = 0;
} else if (endp == 2) {
// Copy to Ring Buffer
for (int i = 0; i < len; i++) {
uint32_t next_head = (usb_rx_head + 1) & USB_RX_MASK;
if (next_head != usb_rx_tail) {
usb_rx_buffer[usb_rx_head] = data[i];
usb_rx_head = next_head;
} else {
// buf overflow
}
}
}
}
static void usb_process_tx(void) {
if (!app.usb_online) return;
// check hw busy (endp 3)
if (USBFSCTX.USBFS_Endp_Busy[3]) return;
// check buffer empty
if (usb_tx_head == usb_tx_tail) return;
// calc contiguous chunk size
uint32_t tail = usb_tx_tail;
uint32_t head = usb_tx_head;
// calc contiguous size linear from tail to end of arr or head
int len;
if (head > tail) {
len = head - tail;
} else {
len = USB_TX_BUF_SIZE - tail;
}
// cap at USB pkt size
if (len > 64) len = 64;
// send to hw, with memcpy
USBFS_SendEndpointNEW(3, (uint8_t*)&usb_tx_buffer[tail], len, 1);
// advance tail
usb_tx_tail = (tail + len) & USB_TX_MASK;
}
static void usb_send_text(const char* str) {
if (!app.usb_online) {
// if offline, just reset buffer
usb_tx_head = usb_tx_tail = 0;
return;
}
while (*str) {
uint32_t next = (usb_tx_head + 1) & USB_TX_MASK;
// buffer full?
if (next == usb_tx_tail) {
usb_process_tx();
uint32_t timeout = app.usb_timeout_cycles; // ~5ms
while (next == usb_tx_tail) {
// this *should* be set by the ISR, so can exit immediately
if (!USB_HW_IS_ACTIVE()) return;
if (--timeout == 0) {
return; // give up and drop the packet
}
usb_process_tx();
}
}
usb_tx_buffer[usb_tx_head] = *str++;
usb_tx_head = next;
}
// tx rightg away
usb_process_tx();
}
// pull a line from ring buffer
static int get_start_command(char* dest_buf, int max_len) {
uint32_t head = usb_rx_head;
uint32_t tail = usb_rx_tail;
if (head == tail) return 0;
int len = 0;
bool found_newline = false;
uint32_t scan = tail;
while (scan != head) {
char c = usb_rx_buffer[scan];
if (c == '\n' || c == '\r') {
found_newline = true;
break;
}
scan = (scan + 1) & USB_RX_MASK;
if (++len >= max_len - 1) break;
}
if (found_newline) {
for (int i = 0; i < len; i++) {
dest_buf[i] = usb_rx_buffer[tail];
tail = (tail + 1) & USB_RX_MASK;
}
dest_buf[len] = 0;
// eat limiters
tail = scan;
while (tail != head) {
char c = usb_rx_buffer[tail];
if (c == '\r' || c == '\n') {
tail = (tail + 1) & USB_RX_MASK;
} else {
break;
}
}
// update the global volatile tail
usb_rx_tail = tail;
return len;
}
return 0;
}
static void handle_usb_state(void) {
int raw_status = USB_HW_IS_ACTIVE();
uint32_t now = millis();
// edge detection
if (raw_status != app.usb_raw_prev) {
app.usb_ts = now;
app.usb_raw_prev = raw_status;
}
// debounce with different thresholds for connect/disconnect
uint32_t threshold = raw_status ? sys_cfg.usb_debounce_connect_ms
: sys_cfg.usb_debounce_disconnect_ms;
if ((now - app.usb_ts) > threshold) {
// state has been stable long enough
if (app.usb_online != raw_status) {
app.usb_online = raw_status;
if (app.usb_online) {
printf("[USB] CONNECTED\n");
usb_rx_tail = usb_rx_head = 0;
} else {
printf("[USB] DISCONNECTED\n");
}
}
}
}
// ------
static void handle_env_sensor(void) {
if (!app.env_sensor_present) {
return;
}
uint32_t now = millis();
if (((now - app.env_last_read) >= sys_cfg.env_sensor_read_interval_ms) &&
aht20_read(&app.current_env) == AHT20_OK) {
app.env_last_read = now;
}
}
// helper to write text to HP3478A display
static void dmm_display(const char* text, const char* mode) {
// cmp vs shadow buf
if (strncmp(app.last_disp_sent, text, HP_DISP_BUF_SIZE) == 0) {
return;
}
// printf("Updating Display: %s\n", text);
// update shadow buf
strncpy(app.last_disp_sent, text, HP_DISP_BUF_SIZE - 1);
// "D[23]" + Text + "\n"
snprintf(scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd), "%s%s\n", mode,
app.last_disp_sent);
// send it
gpib_send(sys_cfg.dmm_addr, scratch.disp.full_cmd);
}
inline static void dmm_display_normal(void) {
gpib_send(sys_cfg.dmm_addr, HP3478A_DISP_NORMAL);
// invalidate cache (we're giving control back to DMM)
app.last_disp_sent[0] = '\0';
}
static void save_dmm_state(void) {
gpib_interface_clear();
gpib_send(sys_cfg.dmm_addr, HP3478A_CMD_STATUS_BYTE);
int len =
gpib_receive_binary(sys_cfg.dmm_addr, (char*)app.saved_state_bytes, 5);
app.has_saved_state = (len == 5) ? true : false;
}
static void restore_dmm_state(void) {
if (!app.has_saved_state) {
printf("[STATE] No saved state, applying defaults.\n");
// default fallback if no state saved
gpib_send(sys_cfg.dmm_addr,
HP3478A_DISP_NORMAL HP3478A_FUNC_DC_VOLTS HP3478A_RANGE_AUTO
HP3478A_DIGITS_5_5 HP3478A_AUTOZERO_ON HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_ONLY);
return;
}
dmm_decoded_state_t state;
decode_dmm_state_bytes(app.saved_state_bytes, &state);
printf("[STATE] Restoring: Func=%s Range=%s Digits=%s\n", state.cmd_func,
state.cmd_range, state.cmd_digits);
// "D1 Fx Rx Nx Zx" + "T1 M20"
build_restoration_string(scratch.cmd.line_buf, &state);
strcat(scratch.cmd.line_buf, HP3478A_TRIG_INTERNAL HP3478A_CMD_MASK_BTN_ONLY);
printf("[STATE] Restore CMD: %s\n", scratch.cmd.line_buf);
gpib_send(sys_cfg.dmm_addr, scratch.cmd.line_buf);
}
static void exit_to_passthrough(void) {
buzzer_hw_set(0);
printf("[APP] Exiting to Passthrough. Restoring DMM...\n");
restore_dmm_state();
gpib_go_to_local(sys_cfg.dmm_addr);
app.current_mode = MODE_PASSTHROUGH;
app.data.menu.layer = SUBMENU_NONE;
app.menu_pos = 0;
app.tone_timer_pending = false;
uint32_t now = millis();
app.last_poll_time = now;
app.ignore_input_start_ts = now;
}
static int init_restored_state(char* unit_dst) {
if (!app.has_saved_state) {
dmm_display("ERR NO STATE", HP3478A_DISP_TEXT_FAST);
return -1;
}
dmm_decoded_state_t saved_cfg;
decode_dmm_state_bytes(app.saved_state_bytes, &saved_cfg);
build_restoration_string(scratch.cmd.line_buf, &saved_cfg);
strcat(scratch.cmd.line_buf,
HP3478A_TRIG_INTERNAL HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
gpib_send(sys_cfg.dmm_addr, scratch.cmd.line_buf);
strcpy(unit_dst, saved_cfg.unit_str);
return 0;
}
static void enter_feature_mode(menu_item_t item) {
printf("[APP] Enter Feature Mode: %s (%d)\n", MENU_NAMES[item], item);
// force display refresh
app.last_disp_sent[0] = '\0';
// clean buffer for cmds
scratch.cmd.line_buf[0] = '\0';
gpib_remote_enable(1); // make sure REN is asserted
switch (item) {
case MENU_AUTOHOLD:
// Assuming you track autohold units in the REL struct or dedicated one
if (init_restored_state(app.data.autohold.unit) == 0) {
app.current_mode = MODE_FEAT_AUTOHOLD;
app.data.autohold.stable_count = 0;
app.data.autohold.is_populated = false;
dmm_display("AUTO HOLD", HP3478A_DISP_TEXT_FAST);
}
break;
case MENU_REL:
if (init_restored_state(app.data.rel.unit) == 0) {
app.current_mode = MODE_FEAT_REL;
app.data.rel.offset = 0.0;
dmm_display("REL MODE", HP3478A_DISP_TEXT_FAST);
}
break;
case MENU_STATS:
if (init_restored_state(app.data.stats.unit) == 0) {
app.current_mode = MODE_FEAT_STATS;
// Initialize Stats
app.data.stats.min = DBL_MAX; // start impossible high
app.data.stats.max = -DBL_MAX; // start impossible low
app.data.stats.sum = 0.0;
app.data.stats.count = 0;
app.data.stats.view_mode = 0;
app.data.stats.disp_timer = millis();
dmm_display("STATS INIT", HP3478A_DISP_TEXT_FAST);
}
break;
case MENU_DBM:
// F1=DCV, A1=AutoRange (Critical for dBm), N5=5.5d
gpib_send(sys_cfg.dmm_addr,
HP3478A_MEAS_AC_VOLTS HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
app.current_mode = MODE_FEAT_DBM;
dmm_display("DBM 50 OHM", HP3478A_DISP_TEXT_FAST);
break;
case MENU_TEMP:
app.current_mode = MODE_FEAT_TEMP;
if (app.temp_sensor == SENS_TYPE_K) {
// Thermocouple Setup:
// F1: DC Volts
// R-2: 30mV Range
// Z1: AutoZero On
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_DC_VOLTS HP3478A_RANGE_NEG_2 HP3478A_DIGITS_5_5
HP3478A_AUTOZERO_ON HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
dmm_display("TEMP TYPE-K", HP3478A_DISP_TEXT_FAST);
} else if (app.temp_sensor == SENS_THERMISTOR) {
// Thermistor: 2-Wire Ohms (Usually standard for NTC)
// Range Auto (NTC varies wildy)
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_OHMS_2WIRE HP3478A_RANGE_AUTO HP3478A_DIGITS_5_5
HP3478A_AUTOZERO_ON HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
char buf[13];
snprintf(buf, sizeof(buf), "NTC %s",
NTC_DEFS[app.temp_ntc_preset].name);
dmm_display(buf, HP3478A_DISP_TEXT_FAST);
} else {
// Resistor Setup (PT1000):
// F3=2W / F4=4W
// R4=30kOhm Range
if (app.temp_wire_mode == WIRE_2W) {
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_OHMS_2WIRE HP3478A_RANGE_4 HP3478A_DIGITS_5_5
HP3478A_AUTOZERO_ON HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
} else {
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_OHMS_4WIRE HP3478A_RANGE_4 HP3478A_DIGITS_5_5
HP3478A_AUTOZERO_ON HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
}
if (app.temp_sensor == SENS_PT1000)
dmm_display("TEMP PT1000", HP3478A_DISP_TEXT_FAST);
// else
// dmm_display("TEMP THERM", HP3478A_DISP_TEXT_FAST);
}
break;
case MENU_CONT:
// F3: 2W Ohm, R0: 30 Ohm Range, N3: 3.5 Digits (fastest ADC), M21
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_OHMS_2WIRE HP3478A_RANGE_1 HP3478A_DIGITS_3_5
HP3478A_AUTOZERO_OFF HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
app.current_mode = MODE_FEAT_CONT;
dmm_display("CONT MODE", HP3478A_DISP_TEXT_FAST);
break;
case MENU_DIODE:
// F3: 2-Wire Ohms
// R3: 3 kOhm Range (1mA Current Through Unknown)
// N4: 4.5 Digits
// Z0: Auto-Zero OFF
gpib_send(sys_cfg.dmm_addr,
HP3478A_FUNC_OHMS_2WIRE HP3478A_RANGE_3 HP3478A_DIGITS_4_5
HP3478A_AUTOZERO_OFF HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
app.current_mode = MODE_FEAT_DIODE;
app.data.diode.connected = 0;
app.data.diode.chirp_start = 0;
dmm_display("DIODE TEST", HP3478A_DISP_TEXT_FAST);
break;
case MENU_XOHM:
// H7: High Impedance / Extended Ohm Mode
// The DMM puts internal 10M in parallel with input
gpib_send(sys_cfg.dmm_addr,
HP3478A_MEAS_OHMS_EXT HP3478A_DIGITS_5_5 HP3478A_TRIG_INTERNAL
HP3478A_CMD_MASK_BTN_DATA HP3478A_CMD_SRQ_CLEAR);
app.data.xohm.r1 = 0.0;
app.data.xohm.calibrated = false;
app.current_mode = MODE_FEAT_XOHM;
dmm_display("XOHM 10M REF", HP3478A_DISP_TEXT_FAST);
break;
case MENU_EXIT:
default:
exit_to_passthrough();
break;
}
}
static void enter_menu_mode(void) {
// force display refresh
app.last_disp_sent[0] = '\0';
save_dmm_state();
// Trigger Hold (T4) to make sure no new measurements
// interrupt our display while we're going through the menu
// also clear SRQ here manually so we don't increment menu entry
// the earlier we clear status bits, the better
gpib_send(sys_cfg.dmm_addr, HP3478A_TRIG_HOLD HP3478A_CMD_SRQ_CLEAR);
app.current_mode = MODE_MENU;
app.menu_pos = MENU_REL;
app.data.menu.timer = millis();
dmm_display("M: REL", HP3478A_DISP_TEXT_FAST);
}
static void handle_feature_logic(void) {
uint8_t stb = 0;
gpib_serial_poll(sys_cfg.dmm_addr, &stb);
// exit button (SRQ)
if (stb & HP3478A_MASK_KEYBOARD_SRQ) {
exit_to_passthrough();
return;
}
// data ready (Bit 0)
if (!(stb & HP3478A_MASK_DATA_READY)) return;
// read measurement
int len = gpib_receive(sys_cfg.dmm_addr, scratch.io.raw_data,
sizeof(scratch.io.raw_data));
if (len < 0) {
// timeout or error
printf("[FEAT] DMM read timeout in feature. Mode: %d\n", app.current_mode);
app.current_mode = MODE_PASSTHROUGH;
app.dmm_online = false;
gpib_interface_clear();
return;
}
double val = parse_double(scratch.io.raw_data);
// overload (HP 3478A sends +9.99990E+9 for OL)
bool is_overload = false;
if (val < DMM_OL_NEG_THRESHOLD || val > DMM_OL_THRESHOLD) is_overload = true;
// RELATIVE MODE
if (app.current_mode == MODE_FEAT_REL) {
if (app.data.rel.offset == 0.0) {
// waiting to capture the NULL value
if (is_overload) {
app.data.rel.stable_count = 0; // reset counter if probes are open
dmm_display("O.VLD", HP3478A_DISP_TEXT_FAST);
} else {
// valid reading
app.data.rel.stable_count++;
if (app.data.rel.stable_count >= sys_cfg.rel_stable_count) {
app.data.rel.offset = val;
dmm_display("NULL SET", HP3478A_DISP_TEXT_FAST);
tone_nb(sys_cfg.buzzer_chirp_hz, sys_cfg.buzzer_chirp_ms);
app.data.rel.stable_count = 0;
} else {
dmm_display("LOCKING...", HP3478A_DISP_TEXT_FAST);
}
}
} else {
// offset is already set
if (is_overload) {
dmm_display("O.VLD", HP3478A_DISP_TEXT_FAST);
} else {
double diff = val - app.data.rel.offset;
char eff_unit[5];
// prepend 'D'
snprintf(eff_unit, sizeof(eff_unit), "D%s", app.data.rel.unit);
format_metric_value(scratch.disp.full_cmd,
sizeof(scratch.disp.full_cmd), diff, eff_unit, 1);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
} else if (app.current_mode == MODE_FEAT_AUTOHOLD) {
bool is_signal_valid = !is_overload && val > sys_cfg.autohold_min_val;
if (!is_signal_valid) {
app.data.autohold.stable_count = 0;
if (!app.data.autohold.is_populated) {
dmm_display("-----", HP3478A_DISP_TEXT_FAST);
}
} else {
// check deviation between current live val and "candidate"
double diff_percent = 0.0;
if (app.data.autohold.stable_count > 0) {
diff_percent = fabs((val - app.data.autohold.candidate_val) /
app.data.autohold.candidate_val) *
100.0;
}
if (app.data.autohold.stable_count == 0 ||
diff_percent <= sys_cfg.autohold_threshold) {
// reading is within stability window
// if this is the start of a new seq, set the candidate
if (app.data.autohold.stable_count == 0) {
app.data.autohold.candidate_val = val;
}
app.data.autohold.stable_count++;
// latch trigger
if (app.data.autohold.stable_count >= sys_cfg.autohold_stable_count) {
// diff between new candidate and old latched val
double change_from_displayed = 0.0;
if (app.data.autohold.is_populated) {
change_from_displayed = fabs((app.data.autohold.candidate_val -
app.data.autohold.latched_val) /
app.data.autohold.latched_val) *
100.0;
}
// only update display (and beep) if:
// 1. we haven't shown anything yet
// 2. the new stable value is (>AUTOHOLD_CHANGE_REQ%) from the old val
if (!app.data.autohold.is_populated ||
change_from_displayed > sys_cfg.autohold_change_req) {
// latch it
app.data.autohold.latched_val = app.data.autohold.candidate_val;
app.data.autohold.is_populated = true;
format_metric_value(
scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd),
app.data.autohold.latched_val, app.data.autohold.unit, 1);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
// chirp
tone_nb(sys_cfg.buzzer_chirp_hz, sys_cfg.buzzer_chirp_ms);
}
// cap counter
app.data.autohold.stable_count = sys_cfg.autohold_stable_count;
}
} else {
// jitter/unstable - reset
app.data.autohold.stable_count = 0;
app.data.autohold.candidate_val = val;
}
}
}
// dBm MODE
// TODO: different references
else if (app.current_mode == MODE_FEAT_DBM) {
if (is_overload) {
dmm_display("O.VLD", HP3478A_DISP_TEXT_FAST);
} else {
// P(mW) = (V^2 / 50) * 1000 = V^2 * 20
double p_mw = (val * val / sys_cfg.dbm_ref_z) * 1000;
if (p_mw < 1e-9) {
// Align -INF to look consistent
// Display: "-INF DBM"
memset(scratch.disp.full_cmd, ' ', HP_DISP_LEN);
scratch.disp.full_cmd[HP_DISP_LEN] = '\0';
memcpy(scratch.disp.full_cmd, "-INF", 4);
memcpy(&scratch.disp.full_cmd[8], " DBM", 4);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
} else {
double dbm = 10.0 * log10(p_mw);
format_metric_value(scratch.disp.full_cmd,
sizeof(scratch.disp.full_cmd), dbm, "DBM", 00);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
}
// TEMP MODE
else if (app.current_mode == MODE_FEAT_TEMP) {
if (is_overload && app.temp_sensor != SENS_TYPE_K) {
dmm_display("OPEN / ERR", HP3478A_DISP_TEXT_FAST);
} else {
double temp_c = 0.0;
const char* unit_str = " C";
// TYPE K THERMOCOUPLE
if (app.temp_sensor == SENS_TYPE_K) {
// 30mV range safety check (Floating input > 50mV)
if (fabs(val) > 0.050) {
dmm_display("CHECK PROBE", HP3478A_DISP_TEXT_FAST);
return;
} else {
double t_amb;
// Cold Junction Compensation (CJC)
if (app.env_sensor_present) {
t_amb = app.current_env.temp_c_x100 / 100.0;
t_amb -= sys_cfg.cjc_self_heating_offset;
unit_str = "C (K)";
} else {
t_amb = sys_cfg.cjc_fallback_temp;
unit_str = "C (K*)"; // '*' means fallback CJC used
}
// Type K response is actually NOT linear, this should be a LUT or a
// polynomial calculation
// Temp = Ambient + (V_meas * Sensitivity)
temp_c = t_amb + (val * sys_cfg.type_k_scale);
}
}
// PT1000 RTD (Callendar-Van Dusen)
else if (app.temp_sensor == SENS_PT1000) {
if (val < 10.0) {
dmm_display("SHORT", HP3478A_DISP_TEXT_FAST);
return;
} else {
double c = sys_cfg.rtd_r0 - val;
double b = sys_cfg.rtd_r0 * sys_cfg.rtd_a;
double a = sys_cfg.rtd_r0 * sys_cfg.rtd_b;
double disc = (b * b) - (4 * a * c);
if (disc >= 0)
temp_c = (-b + sqrt(disc)) / (2 * a);
else {
dmm_display("RANGE ERR", HP3478A_DISP_TEXT_FAST);
return;
}
}
}
// THERMISTOR (simplified Steinhart-Hart)
else {
if (val < 10.0) {
dmm_display("SHORT", HP3478A_DISP_TEXT_FAST);
return;
}
if (val > 4000000.0) {
dmm_display("OPEN", HP3478A_DISP_TEXT_FAST);
return;
}
double r_meas = val;
// constants from our preset
double r0 = NTC_DEFS[app.temp_ntc_preset].r0;
double beta = NTC_DEFS[app.temp_ntc_preset].beta;
const double t0_k = 298.15; // 25.0C in Kelvin
// 1/T = 1/T0 + (1/B * ln(R/R0))
double ln_ratio = log(r_meas / r0);
double inv_t = (1.0 / t0_k) + ((1.0 / beta) * ln_ratio);
// convert Kelvin to Celsius
temp_c = (1.0 / inv_t) - 273.15;
unit_str = "C NTC";
}
format_metric_value(scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd),
temp_c, unit_str, 0);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
// CONT MODE
else if (app.current_mode == MODE_FEAT_CONT) {
int is_short = (!is_overload && val < sys_cfg.cont_threshold_ohms);
// instant beep
buzzer_hw_set(is_short ? sys_cfg.buzzer_cont_hz : 0);
uint32_t now = millis();
if (now - app.data.cont.last_disp_update > sys_cfg.cont_disp_update_ms) {
app.data.cont.last_disp_update = now;
if (is_overload) {
dmm_display("OPEN", HP3478A_DISP_TEXT_FAST);
} else {
format_metric_value(scratch.disp.full_cmd,
sizeof(scratch.disp.full_cmd), val, "OHM", 1);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
}
else if (app.current_mode == MODE_FEAT_DIODE) {
uint32_t now = millis();
double voltage = is_overload ? 9.9 : (val / 1000.0);
bool is_valid_signal =
(voltage > sys_cfg.diode_th_short && voltage < sys_cfg.diode_th_open);
if (voltage < sys_cfg.diode_th_open) {
format_metric_value(scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd),
voltage, "VDC", 1);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
} else {
dmm_display("OPEN", HP3478A_DISP_TEXT);
}
diode_state_t next_state = app.data.diode.connected;
switch (app.data.diode.connected) {
case DIODE_STATE_OPEN:
case DIODE_STATE_SHORT:
if (is_valid_signal) {
next_state = DIODE_STATE_CHECKING;
app.data.diode.chirp_start = now;
} else {
// strictly either open or short
next_state = (voltage >= sys_cfg.diode_th_open) ? DIODE_STATE_OPEN
: DIODE_STATE_SHORT;
}
break;
case DIODE_STATE_CHECKING:
if (!is_valid_signal) {
next_state = DIODE_STATE_SHORT; // signal lost/glitch
} else if ((now - app.data.diode.chirp_start) >=
sys_cfg.diode_stable_ms) {
// has been stable long enough
tone_nb(sys_cfg.buzzer_chirp_hz, sys_cfg.buzzer_chirp_ms);
next_state = DIODE_STATE_DONE;
}
break;
case DIODE_STATE_DONE:
// latch until signal is clearly lost
if (!is_valid_signal) {
next_state = DIODE_STATE_SHORT;
}
break;
default:
next_state = DIODE_STATE_OPEN;
break;
}
app.data.diode.connected = next_state;
}
// XOHM MODE
else if (app.current_mode == MODE_FEAT_XOHM) {
// cal phase, measure the internal 10M resistor
if (!app.data.xohm.calibrated) {
// need the probes to be open. Internal R is ~10M
if (val > 8.0e6 && val < 12.0e6) {
app.data.xohm.r1 = val; // Store R1
app.data.xohm.calibrated = true;
tone_nb(sys_cfg.buzzer_chirp_hz, sys_cfg.buzzer_chirp_ms);
} else {
dmm_display("OPEN PROBES", HP3478A_DISP_TEXT_FAST);
}
}
// Rx = (R1 * R2) / (R1 - R2)
// R1 = xohm_ref (Internal)
// R2 = val (Measured Parallel)
else {
if (is_overload || val >= (app.data.xohm.r1 - 1000.0)) {
dmm_display("OPEN", HP3478A_DISP_TEXT_FAST);
} else {
double r1 = app.data.xohm.r1;
double r2 = val;
double rx = (r1 * r2) / (r1 - r2);
format_metric_value(scratch.disp.full_cmd,
sizeof(scratch.disp.full_cmd), rx, "OHM", 1);
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
} else if (app.current_mode == MODE_FEAT_STATS) {
if (is_overload) {
dmm_display("O.VLD", HP3478A_DISP_TEXT_FAST);
} else {
// accumulate math
if (val < app.data.stats.min) app.data.stats.min = val;
if (val > app.data.stats.max) app.data.stats.max = val;
app.data.stats.sum += val;
app.data.stats.count++;
// rotate display
uint32_t now = millis();
if (now - app.data.stats.disp_timer > sys_cfg.stats_cycle_time_ms) {
app.data.stats.view_mode++;
if (app.data.stats.view_mode > 3) app.data.stats.view_mode = 0;
app.data.stats.disp_timer = now;
}
// render
const char* prefix_str = "";
double val_to_show = val;
switch (app.data.stats.view_mode) {
case 0: // Live
val_to_show = val;
break;
case 1: // Avg
prefix_str = "AVG ";
val_to_show = app.data.stats.sum / app.data.stats.count;
break;
case 2: // Min
prefix_str = "MIN ";
val_to_show = app.data.stats.min;
break;
case 3: // Max
prefix_str = "MAX ";
val_to_show = app.data.stats.max;
break;
default:
app.data.stats.view_mode = 0;
break;
}
// render
if (app.data.stats.view_mode == 0) {
// live mode
format_metric_value(scratch.disp.full_cmd,
sizeof(scratch.disp.full_cmd), val_to_show,
app.data.stats.unit, 1);
} else {
// stats mode: prefix (4) + number (8)
double abs_v = fabs(val_to_show);
double scaled = val_to_show;
char suffix = 0;
if (abs_v >= 1.0e9) {
scaled *= 1.0e-9;
suffix = 'G';
} else if (abs_v >= 1.0e6) {
scaled *= 1.0e-6;
suffix = 'M';
} else if (abs_v >= 1.0e3) {
scaled *= 1.0e-3;
suffix = 'K';
}
char num_buf[16];
double_to_str(num_buf, sizeof(num_buf), scaled, 4);
// combine: prefix + number + suffix
snprintf(scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd),
"%s%s%c ", prefix_str, num_buf, suffix ? suffix : ' ');
}
// send it
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT);
}
}
}
// gens the base string (e.g., "M: TEMP", "S: TYPE K") into
// scratch.disp.full_cmd
static void prepare_menu_base_string(void) {
const char* prefix = "";
const char* name = "???";
if (app.data.menu.layer == SUBMENU_NONE) {
prefix = "M: ";
if (app.menu_pos < MENU_MAX_ITEMS) name = MENU_NAMES[app.menu_pos];
} else if (app.data.menu.layer == SUBMENU_TEMP_SENS) {
prefix = "S: ";
if (app.menu_pos < SENS_MAX_ITEMS) name = SENSOR_NAMES[app.menu_pos];
} else if (app.data.menu.layer == SUBMENU_TEMP_WIRE) {
prefix = "T: ";
if (app.menu_pos < WIRE_MAX_ITEMS) name = WIRE_NAMES[app.menu_pos];
} else if (app.data.menu.layer == SUBMENU_TEMP_NTC) {
prefix = "N: ";
if (app.menu_pos < NTC_MAX_ITEMS) name = NTC_DEFS[app.menu_pos].name;
}
snprintf(scratch.disp.full_cmd, sizeof(scratch.disp.full_cmd), "%s%s", prefix,
name);
}
inline static int get_menu_max_items(void) {
if (app.data.menu.layer == SUBMENU_TEMP_SENS) return SENS_MAX_ITEMS;
if (app.data.menu.layer == SUBMENU_TEMP_WIRE) return WIRE_MAX_ITEMS;
if (app.data.menu.layer == SUBMENU_TEMP_NTC) return NTC_MAX_ITEMS;
return MENU_MAX_ITEMS;
}
static void handle_menu_navigation(void) {
uint32_t now = millis();
uint32_t elapsed = now - app.data.menu.timer;
if (elapsed > MENU_DEBOUNCE_MS) {
// only poll GPIB if physical line is asserted
if (gpib_check_srq()) {
uint8_t stb = 0;
if (gpib_serial_poll(sys_cfg.dmm_addr, &stb) != 0) return;
// check if it was the front panel btn
if (stb & HP3478A_MASK_KEYBOARD_SRQ) {
// reset timer
app.data.menu.timer = now;
app.menu_pos++;
if (app.menu_pos >= get_menu_max_items()) app.menu_pos = 0;
// update display
prepare_menu_base_string();
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
return;
}
}
}
prepare_menu_base_string();
// only calculate dots if we are past the initial delay
if (elapsed > sys_cfg.menu_sublayer_delay_ms) {
uint32_t dot_time = elapsed - sys_cfg.menu_sublayer_delay_ms;
int dots = dot_time / sys_cfg.menu_dot_interval_ms;
if (dots > 3) dots = 3;
for (int i = 0; i < dots; i++) strcat(scratch.disp.full_cmd, ".");
// this does a strncmp every time :c
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
}
if (elapsed <= sys_cfg.menu_commit_delay_ms) return;
// L0: main menu
if (app.data.menu.layer == SUBMENU_NONE) {
if (app.menu_pos == MENU_TEMP) {
// sensor select
app.data.menu.layer = SUBMENU_TEMP_SENS;
app.menu_pos = 0; // default to first sensor
app.data.menu.timer = now;
prepare_menu_base_string();
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
return;
}
// enter standard modes
enter_feature_mode(app.menu_pos);
return;
}
// L1: sensor select
else if (app.data.menu.layer == SUBMENU_TEMP_SENS) {
app.temp_sensor = (temp_sensor_t)app.menu_pos;
if (app.temp_sensor == SENS_TYPE_K) {
// Type K is voltage based so skip wire select
enter_feature_mode(MENU_TEMP);
} else if (app.temp_sensor == SENS_THERMISTOR) {
app.data.menu.layer = SUBMENU_TEMP_NTC;
app.menu_pos = 0; // default to 10K
app.data.menu.timer = now;
prepare_menu_base_string();
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
} else {
// wire select (for resistive)
app.data.menu.layer = SUBMENU_TEMP_WIRE;
app.menu_pos = 0; // default to 2W
app.data.menu.timer = now;
prepare_menu_base_string();
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
}
return;
}
// L2a: wire select
else if (app.data.menu.layer == SUBMENU_TEMP_WIRE) {
app.temp_wire_mode = (wire_mode_t)app.menu_pos;
enter_feature_mode(MENU_TEMP);
return;
} // L2b: NTC select
else if (app.data.menu.layer == SUBMENU_TEMP_NTC) {
app.temp_ntc_preset = (ntc_preset_t)app.menu_pos;
enter_feature_mode(MENU_TEMP);
return;
}
}
static void cmd_help(void) {
static const char* help_text =
"\r\nHP3478A Internal USB-GPIB " FW_VERSION
"\r\n"
"\r\n"
"[GPIB Setup]\r\n"
" ++addr <0-30> Target Address\r\n"
" ++auto <0-2> 0:Off, 1:Read-After-Write, 2:Query-Only\r\n"
" ++read_tmo_ms <t> Timeout in ms\r\n"
" ++eoi <0|1> Assert hardware EOI on write end\r\n"
" ++eos <0-3> Write Term: 0:CRLF, 1:CR, 2:LF, 3:None\r\n"
" ++eor <0-7> Read Stop: 0:CRLF ... 7:EOI-Only\r\n"
" ++eot_enable <B> Append extra char to read output\r\n"
" ++eot_char <dec> The char to append\r\n"
" ++dmm_loop <0|1> Toggle HP3478A loop, if it conflicts w/ GPIB bus\r\n"
"\r\n"
"[System Configuration]\r\n"
" ++config List all configurable parameters\r\n"
" ++get <name> Get parameter value\r\n"
" ++set <name> <v> Set parameter value\r\n"
" ++savecfg Save config to flash\r\n"
" ++ver Firmware Version\r\n"
" ++rst System Reset\r\n"
"\r\n"
"[GPIB Bus Operations]\r\n"
" ++read Read from target\r\n"
" ++write <data> Write to target\r\n"
" ++trg Device Trigger (GET)\r\n"
" ++clr Device Clear (SDC)\r\n"
" ++dcl Universal Device Clear (DCL)\r\n"
" ++ifc Interface Clear (Bus Reset)\r\n"
" ++spoll [addr] Serial Poll\r\n"
" ++srq Query SRQ Line (0=High/Idle, 1=Low/Active)\r\n"
" ++loc Local (Drop REN)\r\n"
" ++llo Local Lockout\r\n"
"\r\n"
"[Internal HP3478A Features]\r\n"
" ++cont, ++hold, ++rel, ++xohm\r\n"
" ++dbm, ++diode, ++math, ++norm\r\n"
" ++temp <l1> <l2> Temperature sensor mode\r\n"
" ++env [temp|hum] Internal AHT20 Sensor\r\n"
" ++disp <text> Write text to LCD\r\n"
"\r\n";
usb_send_text(help_text);
}
static void cmd_status(void) {
int srq = gpib_check_srq();
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf),
"ADDR: %d\r\n"
"TMO : %lu ms\r\n"
"AUTO: %d\r\n"
"EOS : %d\r\n"
"EOR : %d\r\n"
"EOI : %d\r\n"
"EOT : %s (%d)\r\n"
"SRQ : %d\r\n"
"DMM_LOOP : %d\r\n",
sys_cfg.target_addr, sys_cfg.gpib_timeout_ms, sys_cfg.auto_read,
sys_cfg.eos_mode, sys_cfg.eor_mode, sys_cfg.eoi_assert,
sys_cfg.eot_enable ? "ON" : "OFF", sys_cfg.eot_char, srq,
app.dmm_loop);
usb_send_text(scratch.cmd.fmt_buf);
}
static void process_command(void) {
if (!get_start_command(scratch.cmd.line_buf, sizeof(scratch.cmd.line_buf))) {
return;
}
char* p_cmd = skip_spaces(scratch.cmd.line_buf);
menu_item_t menu_item = MENU_EXIT;
if (strncmp(p_cmd, "++", 2) == 0) {
p_cmd += 2;
char* p_args = p_cmd;
while (*p_args && !isspace((unsigned char)*p_args)) {
p_args++;
}
// if we found a space/separator, split
if (*p_args) {
*p_args = 0;
p_args++;
p_args = skip_spaces(p_args);
}
cmd_id_t cmd_id = parse_command_id(p_cmd);
switch (cmd_id) {
// config
case CMD_ADDR:
if (*p_args) {
int addr = atoi(p_args);
if (addr >= 0 && addr <= 30) {
sys_cfg.target_addr = addr;
} else
usb_send_text("ERR: Invalid Addr\r\n");
} else {
// if no arg provided, show current
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
sys_cfg.target_addr);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_AUTO:
if (*p_args) {
int val = atoi(p_args);
// Allow 0, 1, 2. Ignore 3 since we don't support it
// it's possible but.. effort
if (val >= 0 && val <= 2) {
sys_cfg.auto_read = val;
}
} else {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
sys_cfg.auto_read);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_VER:
usb_send_text("HP3478A Internal USB-GPIB " FW_VERSION "\r\n");
break;
case CMD_STAT:
cmd_status();
break;
case CMD_HELP:
cmd_help();
break;
case CMD_RST:
NVIC_SystemReset();
break;
case CMD_EOI:
if (*p_args) {
sys_cfg.eoi_assert = (atoi(p_args) ? true : false);
} else {
usb_send_text(sys_cfg.eoi_assert ? "1\r\n" : "0\r\n");
}
break;
case CMD_EOS:
if (*p_args) {
int val = atoi(p_args);
if (val >= 0 && val <= 3) sys_cfg.eos_mode = val;
} else {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
sys_cfg.eos_mode);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_EOT_ENABLE:
if (*p_args) {
sys_cfg.eot_enable = (atoi(p_args) ? true : false);
} else {
usb_send_text(sys_cfg.eot_enable ? "1\r\n" : "0\r\n");
}
break;
case CMD_EOT_CHAR:
if (*p_args) {
sys_cfg.eot_char = (uint8_t)atoi(p_args);
} else {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
sys_cfg.eot_char);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_EOR:
if (*p_args) {
int val = atoi(p_args);
if (val >= 0 && val <= 7) {
sys_cfg.eor_mode = val;
}
} else {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
sys_cfg.eor_mode);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_MODE:
if (*p_args) {
// int val = atoi(p_args);
// if (val == 1) {
// // we are always controller
// } else {
// usb_send_text("ERR: dev mode unsupp\r\n");
// }
} else {
// current mode -> 1
usb_send_text("1\r\n");
}
break;
case CMD_DMM_LOOP:
if (*p_args) {
app.dmm_loop = (atoi(p_args) ? true : false);
exit_to_passthrough();
gpib_interface_clear();
} else {
usb_send_text(app.dmm_loop ? "1\r\n" : "0\r\n");
}
break;
case CMD_SAVECFG:
config_save();
break;
case CMD_CFG_LIST: {
// dump all config values
for (size_t i = 0; i < CONFIG_MAP_SIZE; i++) {
const cfg_field_t* f = &CONFIG_MAP[i];
uint8_t* base_addr = (uint8_t*)&sys_cfg;
void* p_val = (void*)(base_addr + f->offset);
usb_send_text(f->name);
usb_send_text(": ");
if (f->type == CFG_TYPE_UINT8) {
snprintf(scratch.cmd.fmt_buf, 64, "%u\r\n", *(uint8_t*)p_val);
} else if (f->type == CFG_TYPE_UINT32) {
snprintf(scratch.cmd.fmt_buf, 64, "%lu\r\n", *(uint32_t*)p_val);
} else if (f->type == CFG_TYPE_DOUBLE) {
double_to_str(scratch.cmd.fmt_buf, 64, *(double*)p_val, 6);
strcat(scratch.cmd.fmt_buf, "\r\n");
}
usb_send_text(scratch.cmd.fmt_buf);
}
break;
}
case CMD_CFG_GET: {
char* arg_name = p_args;
// terminate arg at next space
char* p_end = strchr(arg_name, ' ');
if (p_end) *p_end = 0;
const cfg_field_t* f = find_config_field(arg_name);
if (!f) {
usb_send_text("ERR: Param not found\r\n");
} else {
uint8_t* base_addr = (uint8_t*)&sys_cfg;
void* p_val = (void*)(base_addr + f->offset);
if (f->type == CFG_TYPE_UINT8) {
snprintf(scratch.cmd.fmt_buf, 64, "%u\r\n", *(uint8_t*)p_val);
} else if (f->type == CFG_TYPE_UINT32) {
snprintf(scratch.cmd.fmt_buf, 64, "%lu\r\n", *(uint32_t*)p_val);
} else if (f->type == CFG_TYPE_DOUBLE) {
double_to_str(scratch.cmd.fmt_buf, 64, *(double*)p_val,
6); /* precision 6 */
strcat(scratch.cmd.fmt_buf, "\r\n");
}
usb_send_text(scratch.cmd.fmt_buf);
}
break;
}
case CMD_CFG_SET: {
// syntax: ++set <param> <value>
char* arg_name = p_args;
char* arg_val = strchr(arg_name, ' ');
if (!arg_val) {
usb_send_text("ERR: Missing value\r\n");
return;
}
*arg_val = 0;
arg_val++;
arg_val = skip_spaces(arg_val);
const cfg_field_t* f = find_config_field(arg_name);
if (!f) {
usb_send_text("ERR: Param not found\r\n");
} else {
uint8_t* base_addr = (uint8_t*)&sys_cfg;
void* p_dest = (void*)(base_addr + f->offset);
if (f->type == CFG_TYPE_UINT8) {
*(uint8_t*)p_dest = (uint8_t)atoi(arg_val);
} else if (f->type == CFG_TYPE_UINT32) {
*(uint32_t*)p_dest = (uint32_t)strtoul(arg_val, NULL, 10);
} else if (f->type == CFG_TYPE_DOUBLE) {
*(double*)p_dest = parse_double(arg_val);
}
config_apply_to_app();
}
break;
}
case CMD_SRQ:
usb_send_text(gpib_check_srq() ? "1\r\n" : "0\r\n");
break;
// data
case CMD_READ:
goto do_read_operation;
case CMD_WRITE:
if (*p_args) {
gpib_send(sys_cfg.target_addr, p_args);
// if auto is 1 (Read-after-write), read now
if (sys_cfg.auto_read == 1) goto do_read_operation;
}
break;
// GPIB Bus control
case CMD_TIMEOUT:
if (*p_args) {
int val = atoi(p_args);
// min 1ms, max 60s
if (val > 0 && val < 60000) {
sys_cfg.gpib_timeout_ms = val;
} else {
usb_send_text("ERR: Range 1-60000\r\n");
}
} else {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%lu\r\n",
sys_cfg.gpib_timeout_ms);
usb_send_text(scratch.cmd.fmt_buf);
}
break;
case CMD_TRG:
gpib_trigger(sys_cfg.target_addr);
break;
case CMD_CLR:
gpib_device_clear(sys_cfg.target_addr);
break;
case CMD_DCL:
gpib_universal_clear();
break;
case CMD_IFC:
gpib_interface_clear();
break;
case CMD_LLO:
gpib_local_lockout();
break;
case CMD_GTL:
gpib_go_to_local(sys_cfg.target_addr);
break;
case CMD_LOC:
gpib_remote_enable(0);
break;
case CMD_REN:
if (*p_args) {
gpib_remote_enable(atoi(p_args));
} else
usb_send_text("ERR: Usage ++ren 1|0\r\n");
break;
case CMD_SPOLL: {
uint8_t poll_addr = (*p_args) ? atoi(p_args) : sys_cfg.target_addr;
uint8_t stb;
if (gpib_serial_poll(poll_addr, &stb) == 0) {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf), "%d\r\n",
stb);
usb_send_text(scratch.cmd.fmt_buf);
} else
usb_send_text("ERR: Poll TMO\r\n");
break;
}
// HP3478A Internal Features
case CMD_NORM:
exit_to_passthrough();
// ensure REN is back up for normal use
gpib_remote_enable(1);
usb_send_text("OK\r\n");
break;
case CMD_DISP: {
int i = 0;
while (p_args[i] != 0 && i < HP_DISP_LEN) {
char c = p_args[i];
if (c >= 'a' && c <= 'z') c -= 32;
scratch.disp.full_cmd[i++] = c;
}
scratch.disp.full_cmd[i] = 0;
dmm_display(scratch.disp.full_cmd, HP3478A_DISP_TEXT_FAST);
usb_send_text("OK\r\n");
break;
}
case CMD_ENV: {
if (!app.env_sensor_present) {
usb_send_text("ERR: No Sensor\r\n");
return;
}
double t = app.current_env.temp_c_x100 / 100.0;
double h = app.current_env.hum_p_x100 / 100.0;
char* arg = skip_spaces(p_args);
char out_buf[32];
// temp only
if (starts_with_nocase(arg, "temp")) {
double_to_str(out_buf, sizeof(out_buf), t, 2);
usb_send_text(out_buf);
usb_send_text("\r\n");
}
// hum only
else if (starts_with_nocase(arg, "hum")) {
double_to_str(out_buf, sizeof(out_buf), h, 2);
usb_send_text(out_buf);
usb_send_text("\r\n");
}
// CSV format (temp,hum)
else {
double_to_str(out_buf, 16, t, 2);
strcat(out_buf, ",");
// fmt humidity into a temp buffer and append
char h_buf[16];
double_to_str(h_buf, sizeof(h_buf), h, 2);
strcat(out_buf, h_buf);
strcat(out_buf, "\r\n");
usb_send_text(out_buf);
}
break;
}
// feat entry
case CMD_CONT:
menu_item = MENU_CONT;
break;
case CMD_AUTOHOLD:
menu_item = MENU_AUTOHOLD;
break;
case CMD_TEMP: {
// syntax: +temp <type> [config]
menu_item = MENU_TEMP;
if (*p_args == 0) {
usb_send_text(
"Syntax: ++temp <type> [config]\r\n"
"0 PT1000\r\n"
"1 Thermistor [0..11]\r\n"
"2 Type K [0=2Wire, 1=4Wire]\r\n");
return;
}
char* next;
long l1 = strtol(p_args, &next, 10);
long l2 = strtol(next, NULL, 10);
if (l1 < 0 || l1 >= SENS_MAX_ITEMS) {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf),
"ERR: max %d sensor idx\r\n", SENS_MAX_ITEMS - 1);
usb_send_text(scratch.cmd.fmt_buf);
return;
}
if (l1 == SENS_THERMISTOR) {
if (l2 < 0 || l2 >= NTC_MAX_ITEMS) {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf),
"ERR: max %d preset idx\r\n", NTC_MAX_ITEMS - 1);
usb_send_text(scratch.cmd.fmt_buf);
return;
}
app.temp_ntc_preset = (ntc_preset_t)l2;
} else if (l1 == SENS_TYPE_K) {
if (l2 < 0 || l2 >= WIRE_MAX_ITEMS) {
snprintf(scratch.cmd.fmt_buf, sizeof(scratch.cmd.fmt_buf),
"ERR: 0 = 2W, 1 = 4W mode\r\n");
usb_send_text(scratch.cmd.fmt_buf);
return;
}
app.temp_wire_mode = (wire_mode_t)l2;
}
app.temp_sensor = (temp_sensor_t)l1;
break;
}
case CMD_REL:
menu_item = MENU_REL;
break;
case CMD_XOHM:
menu_item = MENU_XOHM;
break;
case CMD_DBM:
menu_item = MENU_DBM;
break;
case CMD_DIODE:
menu_item = MENU_DIODE;
break;
case CMD_MATH: {
menu_item = MENU_STATS;
break;
}
default:
usb_send_text("ERR: Unknown cmd\r\n");
break;
}
// if it was an internal cmd
if (menu_item != MENU_EXIT) {
save_dmm_state(); // save before changing
enter_feature_mode(menu_item);
usb_send_text("OK\r\n");
}
return;
}
// passthrough mode (not "++")
if (gpib_send(sys_cfg.target_addr, p_cmd) < 0) {
usb_send_text("ERR: Send Fail\r\n");
return;
}
// 2. Auto-Read Logic
// If Auto == 1: Always Read
// If Auto == 2: Read only if command ends with '?'
if (sys_cfg.auto_read == 1 || (sys_cfg.auto_read == 2 && is_query(p_cmd))) {
goto do_read_operation;
}
return;
do_read_operation: {
int len = gpib_receive(sys_cfg.target_addr, scratch.io.raw_data,
sizeof(scratch.io.raw_data));
if (len > 0) {
usb_send_text(scratch.io.raw_data);
} else {
// 'no-data' state or EOI
// maybe send nothing or a newline?
}
}
}
static void dmm_loop(void) {
uint32_t now = millis();
if (app.tone_timer_pending) {
if ((now - app.tone_start_ts) >= app.tone_duration) {
buzzer_hw_set(0);
app.tone_timer_pending = false;
}
}
// Passthrough
if (app.current_mode == MODE_PASSTHROUGH) {
int srq_asserted = gpib_check_srq();
int time_to_poll = (now - app.last_poll_time) >= sys_cfg.poll_interval_ms;
// if disconnected, we only try to reconnect on timer ticks
if (!app.dmm_online && !time_to_poll) return;
// if online, we poll if SRQ is pulled OR timer expires
if (app.dmm_online && !srq_asserted && !time_to_poll) return;
app.last_poll_time = now;
uint8_t stb = 0;
// try to talk to DMM
int poll_result = gpib_serial_poll(sys_cfg.dmm_addr, &stb);
if (poll_result != 0) {
// poll failed (Timeout/NACK)
if (app.dmm_online) {
// printf("DMM Lost connection.\n");
app.dmm_online = false;
}
// slow down polling when offline
sys_cfg.poll_interval_ms = sys_cfg.dmm_recovery_delay_ms;
return;
}
// got a valid response, check if this is a recovery
if (!app.dmm_online) {
// printf("DMM Recovered.\n");
// only assert REN here when it's online
gpib_remote_enable(1);
gpib_interface_clear();
app.dmm_online = true;
#if defined(BUZZER_ONLINE_TUNE) && BUZZER_ONLINE_TUNE
play_tune(ONLINE_NOTES);
#endif
gpib_send(sys_cfg.dmm_addr,
HP3478A_CMD_MASK_BTN_ONLY HP3478A_CMD_SRQ_CLEAR);
gpib_go_to_local(sys_cfg.dmm_addr);
sys_cfg.poll_interval_ms =
sys_cfg.poll_interval_ms; // restore fast polling
return;
}
// valid and online, check buttons
if (stb & HP3478A_MASK_KEYBOARD_SRQ &&
(now - app.ignore_input_start_ts) > sys_cfg.menu_lockout_ms) {
enter_menu_mode();
}
return;
}
// Nav
if (app.current_mode == MODE_MENU) {
handle_menu_navigation();
return;
}
// Features
// early exit if no SRQ
if (!gpib_check_srq()) {
return;
}
uint8_t stb;
if (gpib_serial_poll(sys_cfg.dmm_addr, &stb) != 0) {
// DMM crashed during feature mode
// printf("Feature crash: DMM Lost\n");
app.current_mode = MODE_PASSTHROUGH;
app.dmm_online = false;
gpib_interface_clear();
return;
}
// check exit button first (priority)
if (stb & HP3478A_MASK_KEYBOARD_SRQ) {
exit_to_passthrough();
return;
}
// handle measurement data ready
if (stb & HP3478A_MASK_DATA_READY) {
handle_feature_logic();
}
}
int main() {
SystemInit();
systick_init();
funGpioInitAll();
config_init();
buzzer_init();
i2c_init();
if (aht20_init() == AHT20_OK) {
app.env_sensor_present = true;
printf("[INIT] AHT20 Sensor OK\n");
} else {
app.env_sensor_present = false;
printf("[INIT] AHT20 Sensor MISSING\n");
}
gpib_init();
USBFSSetup();
// usb_debug = 1;
// app state
app.usb_raw_prev = USB_HW_IS_ACTIVE();
config_apply_to_app();
// init timers
uint32_t now = millis();
app.usb_ts = now;
app.ignore_input_start_ts = now - 2000;
app.last_poll_time = 0;
app.env_last_read = 0;
while (1) {
handle_usb_state();
usb_process_tx();
if (app.dmm_loop) {
dmm_loop();
}
handle_env_sensor();
if (app.usb_online) {
process_command();
}
}
}