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Abstract

The Smith chart is a very valuable and important tool that facilitates interpre-
tation of S-parameter measurements. This paper will give a brief overview o

why and more importantly on how to use the chart. Its definition as well as an
introduction on how to navigate inside the cart are illustrated. Useful example

show the broad possibilities for usage of the chart in a variety of application

1 Motivation

With the equipment at hand today, it has become rather easy to measuréabgorefactorl’ even
for complicated networks. In the "good old days" though, this was donesumieg the electric field
strength at of a coaxial measurement line with a slit at different positions in axiattine (Fig. 1). A
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Fig. 1: Schematic view of a measurement setup used to determineftietion coefficient as well as the voltage
standing wave ratio of a device under test (DUT) [1].

small electric field probe, protruding into the field region of the coaxial liner lee outer conductor,
was moved along the line. Its signal was picked up and displayed on a nittrmeter after rectification
via a microwave diode. While moving the probe, field maxima and minima as well aptigtiton and
spacing could be found. From this the reflection fadt@nd theVoltageSandingWaveRatio (VSWR
or SWR) could be determined using following definitions:

— I' is defined as the ratio of the electrical field strengttof the reflected wave over the forward

traveling wave:
E of reflected wave

E of forward traveling wave @
— The VSWR is defined as the ratio of maximum to minimum measured voltage:
Unax _ 1 +]T)
VSWR = = 2

1The electrical field strength was used since it can be measured catjdeasier than the magnetic field strength.



Although today this measurements are far easier to conduct, the definitidresafbrementioned quan-
tities are still valid. Also their importance has not diminished in the field of microveaggneering and
so the reflection coefficient as well as the VSWR are still a vital part ofibeyday life of a microwave
engineer be it for simulations or measurements.

A special diagram is widely used to visualize and to facilitate the determinatioa themtities.
Since it was invented in 1939 by the engineer Phillip Smith, it is simply known asrttigh Shart [2].

2 Definition of the Smith Chart

The Smith chart provides a graphical representation tfiat permits the determination of quantities
such as the VSWR or the terminating impedance of a device under test (RU3@¢s a bilinear Moebius
transformation, projecting the complex impedance plane onto the cofii@ne:

_Z—Zo
_Z+Zo

with Z = R+ X 3)

As can be seen in Fig. 2 the half plane with positive real part of impeddnsenapped onto the interior
of the unit circle of thd” plane. For a detailed calculation see Appendix A.

X =1Im (2) Im (T')

RxRe () Re [

Fig. 2: lllustration of the Moebius transform from the complex irdpace plane to the plane commonly known
as Smith chart.

2.1 Properties of the Transformation
In general, this transformation has two main properties:

— generalized circles are transformed into generalized circles (notegstraight line is nothing else
than a circle with infinite radius and is therefore mapped as a circle in the Smith cha

— angles are preserved locally

Fig. 3 illustrates how certain basic shapes transform from the impedanaeligptane.



X=Im(2)

Fig. 3: lllustration of the transformation of basic shapes fromh thel” plane.

2.2 Normalization
The Smith chart is usually normalized to a terminating impedafyde real):

_Z
-

(4)

z

This leads to a simplification of the transform:

z—l@ 1+ |
z =
z+1 1— |

= (5)
Although Z = 509 is the most common reference impedance (characteristic impedance ofl @@axia
bles) and many applications use this normalization, there is any other repbaitide value possible.
Thereforeit is crucial to check the normalization before using any chart.

Commonly used charts that map the impedance plane onfo ph@ne always look confusing at
first, as many circles are depicted (Fig.4). Keep in mind that all of them eataleulated as shown
in Appendix A and that this representation is the same as shown in all figefesb— it just contains
more circles.

2.3 Admittance plane

The Moebius transform that generates the Smith chart provides also angapthe complex admittance
plane ¢ =  or normalizedy = 1) into the same chart:

y-1  Y-Yy YZ-1/Z0 Z—-Zy z-1
T oy+1l Y+Yy 1/Z+1/Zy Z+Zy =z+1

(6)

Using this transformation, the result is the same chart, only mirrored at theragfrthe Smith chart
(Fig.5). Often both mappings, the admittance and the impedance plane,nabened into one chart,
which looks even more confusing (see last page). For reasons of dignplidliustrations in this paper
will use only the mapping from the impedance to ihplane.
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Fig. 4: Example for a commonly used Smith chart.

3 Navigation in the Smith chart

The representation of circuit elements in the Smith chart is discussed in thiteclséarting with the
important points inside the chart. Then several examples of circuit elemdhtsevgiven and their
representation in the chart will be illustrated.

3.1 Important points
There are three important points in the chart:

1. Open circuit with' =1,z — oo
2. Short circuitwithl' = -1,z =0
3. Matched load witi* =0,z =1

They all are located on the real axis at the beginning, the end and the oéttte circle (Fig. 6). The
upper half of the chart is inductive, since it corresponds to the pogitimginary part of the impedance.
The lower half is capacitive as it is corresponding to the negative imagpaatyf the impedance.
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Fig. 5: Mapping of the admittance plane into theplane.
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Fig. 6: Important points in the Smith chart.

Concentric circles around the diagram center represent constaticil factors (Fig. 7). Their
radius is directly proportional to the magnitudelgttherefore a radius of 0.5 corresponds to reflection of
3 dB (half of the signal is reflected) whereas the outermost circle (radi)sepresents full reflection.
Therefore matching problems are easily visualized in the Smith chart since atatiswill lead to a

reflection coefficient larger than O (equation (7)).

Power into the load = forward power - reflected power=

(laf* = 16*) = ’2' (1-mr?) @

N | =
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Fig. 7: lllustration of circles representing a constant reflecfemtor.

2
In equation (7) the European notatfds used, where power%. Furthermorg1 — |I'|*) corresponds
to the mismatch loss.
Although only the mapping of the impedance plane tolth@ane is used, one can easily use it to
determine the admittance since
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In the chart this can be visualized by rotating the vector of a certain impedsnt80 (Fig. 8).
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Fig. 8: Conversion of an impedance to the corresponding emittanttesi Smith chart.

2The commonly used notation in the US is poweju. These conventions have no impact on S—parameters but they are
relevant for absolute power calculation. Since this is rarely used in the $hatt, the used definition is not critical for this

paper.



3.2 Adding impedances in series and parallel (shunt)

A lumped element with variable impedance connected in series as an examg@engfia circuit. The

corresponding signature of such a circuit for a variable inductandeaarariable capacitor is a circle.
Depending on the type of the impedance this circle is passed through clecfimdsictance) or coun-
terclockwise (Fig.9). If a lumped element is added in parallel, the situation isaime as it is for an
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Fig. 9: Traces of circuits with variable impedances connectedriese

element connected in series mirrored by 180ig. 10). This corresponds to taking the same points in
the admittance mapping. Summarizing both cases, one ends up with a simple ndgifation in the
Smith chart:

1 For elements connected in series use the circles in the impedance plane. Go clockwise for an added
inductance and anticlockwise for an added capacitor. For elements in parallel use the circles in the
admittance plane. Go clockwise for an added capacitor and anticlockwise for an added inductance.
This rule can be illustrated as shown in Fig. 11

3.3 Impedance transformation by transmission line

The S—matrix of an ideal, lossless transmission line of lehgglyiven by

0 e_j/Bl
s=eh 0 |

wherejs = 27” is the propagation coefficient with the wavelengtt\ = A\ for ¢, = 1).

(9)

When adding a piece of coaxial line, we turn clockwise on the correspgmitcle leading to a
transformation of the reflection factbyoag (Without line) to the new reflection factdl, = I'gage 127",

Graphically spoken, this means that the vector correspondiig, fis rotated clockwise by an angle of
251 (Fig. 12).
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Fig. 11: lllustration of navigation in the Smith chart when addingjeed elements.
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Fig. 12: lllustration of adding a transmission line of lendtto an impedance.

The peculiarity of a transmission line is, that it behaves either as an indect@amapacitor or a
resistor depending on its length. The impedance of such a line (if lossigggiven by
(10)

Zin = jZo tan(pl)

The function in equation (10) has a pole at a transmission line Ieng}r(ﬁi‘g. 13). Therefore adding a

Im (2)

inductive

e @)

capacitive

Fig. 13: Impedance of a transmission line as a function of its letgth

transmission line with this length results in a chang€ bfy a factor—1:
(11)

. orom =2 .
Ilin = I‘Ioade_ﬂ’gl = Floade_ﬂ( L Tioad€ ™ = —Toad

Again this is equivalent to changing the original impedand® it's admittance% or the clockwise

movement of the impedance vector by 18&specially when starting with a short circuit @t in the
Smith chart), adding a transmission line of Iengttransforms it into an open circuit (atl in the Smith

chart).



A line that is shorter thalﬁ behaves as an inductance, while a line that is longer acts a capacitor.
Since these properties of transmission lines are used very often, the Sarithsimally has a ruler around
its border, where one can reéd— it is the parametrization of the outermost circle.

3.4 Examples of different 2—ports
In general, the reflection coefficient when looking through a 2-Pgris given via the S—matrix of the
2—port and the reflection coefficient of the l0Bgaq:

S128211—‘I0ad
Tin=Siu+-—a—r 12
in = Si1 I~ Syl (12)

In general, the outer circle of the Smith chart as well as its real axis areadappther circles and lines.

In the following three examples of different 2—ports are given along wilr —matrix, and their
representation in the Smith chart is discussed. For illustration, a simplified Snaithodmsisting of the
outermost circle and the real axis only is used for simplicity reasons.

3.4.1 Transmission line 2
The S—matrix of al’\—6 transmission line is
0 els
s= o0 %] (13)
with the resulting reflection coefficient _
Cin = Dioad€ ' 4 (14)

This corresponds to a rotation of the real axis of the Smith chart by an ahg (Fig. 14) and hence a
change of the reference plane of the chart (Fig. 14). Considekéongle a transmission line terminated
by a short and hendgqag = —1. The resultinig reflection coefficient is then equaltp = eli,

Fig. 14: Rotation of the reference plane of the Smith chart when apditmansmission line.

3.4.2 Attenuator 3dB
The S—matrix of an attenuator is given by

0 V2
[0 %] w
2
The resulting reflection coefficient is
D = —o2 (16)



In the Smith chart, the connection of such an attenuator causes the outeintledb shrink to a radius
of 0.5° (Fig. 15).

Fig. 15: Illlustration of the appearance of an attenuator in the Sofitrt.

3.4.3 Variableload resistor

Adding a variable load resistor (@ = < c0) is the simplest case that can be depicted in the Smith chart.
It means moving through the chart along its real axis (Fig. 16).

Fig. 16: A variable load resistor in the simplified Smith chart. Sitloe impedance has a real part only, the signal
remains on the real axis of theplane.

4 Advantages of the Smith chart —a summary

— The diagram offers a compact and handy representation of alvpasgiedancésfrom 0 to co.
Impedances with negative real part such as reflection amplifier or ary attive device would
show up outside the Smith chart.

— Impedance mismatch is easily spotted in the chart.

— Since the mapping converts impedances or admittances §) into reflection factors and vice
versa, it is particularly interesting for studies in the radio frequency ancomave domain. For
convenience reasons electrical quantities are usually expressed irofafimest or forward waves
and reflected or backwards waves in these frequency ranges ingtealthges and currents used
at lower frequencies.

3An attenuation of 3dB corresponds to a reduction by a factor 2 in power.
“Passive impedances are impedances with positive real part.

11



— The transition between impedance and admittance in the chart is particulsytyl&s = %) =
—I'(z)

— Furthermore the reference plane in the Smith chart can be moved véylgaadding a trans-
mission line of proper length (3.4.1).

— Many Smith charts have rulers below the comdlgxane from which a variety of quantities such
as e.g. the return loss can be determined. For a more detailed discusskppseedix B.

5 Examples for applications of the Smith chart

In this section two practical examples of common problems are given, whrerestéhof the Smith chart
facilitates their solving very much.

5.1 A step in characteristic impedance

Consider a junction between two infinitely short cables, one with a chaisttémpedance of 50 and
the other with 78 (Fig. 17). The waves running into each port are denoted wjiitai = 1, 2) whereas

ay i a2
Junction between g4=——

5002 and a 752 cable

—1(infinetly short cable§——
b1 b2

Fig. 17: lllustration of the junction between a coaxial cable witff%5€haracteristic impedance and another with
7502 characteristic impedance respectively. Infinetly shdoleaare assumed — only the junction is considered.

the waves coming out of every point are denoted wjthThe reflection coefficient for port 1 is then
calculated as:

Z—7Zy T75-50
Z+Zy 75450

Thus the voltage of the reflected wave at port 1 is 20% of the incident {ave- a:-0.2) and the
reflected power at port 1 is £%From conservation of energy, the transmitted power has to be 96% and
it follows thatb2 = 0.96.

A peculiarity here is that the transmitted energyiigher than the energy of the incident wave,
since Encident = 1, Ereflected= 0.2 and therefore &nsmitted= Eincident + Ereflected= 1.2. The transmission
coefficientt thus ist = 1 + I'. Also note that this structure is not symmetric (S# Sy2), but only
reciprocal (91 = Sp9).

The visualization of this structure in the Smith chart is considerably easg alhmpedances are
real and thus all vectors are located on the real axis (Fig. 18).

As stated before, the reflection coefficient is defined with respect togedtd-or currents its sign
inverts and thus a positive reflection coefficient in terms of voltage defirggds negative when defined
with respect to current.

For a more general case, e4. = 502 andZ> = 50 + j80¢2, the vectors in the chart are depicted
in Fig. 19.

Iy

0.2 (17)

SPower is proportional td'? and thus 0.2=0.04

12
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Fig. 19: Visualization of the two port depicted on the left in the Smihart.

5.2 Determination of theQ—factors of a cavity

One of the most common cases where the Smith chart is used is the determinatiergodlity factor
of a cavity. This section is dedicated to the illustration of this task.

A cavity can be described by a parallRLC circuit (Fig. 20) where the resonance condition is
given when:

wL =— (18)
This leads to the resonance frequency of

1 1 1

Wres m fres me ( )
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Fig. 20: The equivalent circuit that can be used to describe a calitg. transformer is hidden in the coupling of
the cavity ¢ ~ 1 M(2, seen by the beam) to the generator (usudlh 5052).

The Impedance’ of such an equivalent circuit is given by:

1
Z(w) = T . ~ 1 (20)
£ +iwC+
The 3dB bandwidthA f refers to the points where R&)( = Im (Z) which corresponds to two
vectors with an argument of 4§Fig. 21) and an impedance 3 _sqg)| = 0.707R = R/V?2.

Im (2) =150

[ = f(res)

Re (2)

f=0

f= f(t:%dB)

Fig. 21: Schematic drawing of the 3 dB bandwidth in the Impedanceeplan

In general, the quality factap of a resonant circuit is defined as the ration of the stored energy
W over the energy dissipated in one cyéte

wW
Q=% (21)
The @ factor for a resonance can be calculated via the 3dB bandwidth andstivearece frequency:
_ fres
N (22)

For a cavity three different quality factors are defined:

14



— Qo (Unloaded®): @ factor of the unperturbed system, i. e. the stand alone cavity
— QL (Loaded®): @ factor of the cavity when connected to generator and measurement circuits

— Qext (ExternalQ): @ factor that describes the degeneratiorQQagfdue to the generator and diag-
nostic impedances

All these() factors are connected via a simple relation:

1 1 1
=4 23
QL QO Qext ( )
The coupling coefficiens is then defined as:
Qo
= 24
7= Qex )

This coupling coefficient is not to be confused with the propagation cosfti of transmission lines
which is also denoted a%

In the Smith chart, a resonant circuit shows up as a circle (Fig. 22, cinolersin the detuned
short position). The larger the circle is, the stronger the coupling. Tiypes of coupling are defined
depending on the range bfta (= size of the circle, assuming the circle is in the detuned short position):
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Fig. 22: lllustration of how to determine the differe@t factors of a cavity in the Smith chart.

— Undercritical coupling{ < 8 < 1): The radius of resonance circle is smaller than 0.25. Hence
the center of the chart lies outside the circle.

— Critical coupling ¢ = 1): The radius of the resonance circle is exactly 0.25. Hence the circle
touches the center of the chart.

— Overcritical coupling{ < 8 < o0): The radius of the resonance circle is larger than 0.25. Hence
the center of the chart lies inside the circle
In practice, the circle may be rotated around the origin due to the transmisssrbktween the resonant
circuit and the measurement device.

From the different marked frequency points in Fig. 22 the 3dB bandwidththus the quality
factorsQ, QL andQex: can be determined as follows:

15



— The unloaded) can be determined from fand §;. The condition to find these points is RB(=
Im(Z) with the resonance circle in the detuned short position.

— The loaded) can be determined from find §,. The condition to find these points|isn(S;1)| —
max.

— The external) can be calculated frony fand f,. The condition to determine these pointss
+j.

To determine the points to fg with a network analyzer, the following steps are applicable:

— f; and £: Set the marker format to Re{S + jIm(S;;) and determine the two points, where
Im(S;1) = max.

— fy and f;: Set the marker format t& and find the two points wherg = +j.

— fs and §: Set the marker format t& and locate the two points where R§(= Im(Z2)
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Appendices

A Transformation of lines with constant real or imaginary part from the impedance
plane to theT" plane

This section is dedicated to a detailed calculation of the transformation ofinatgdines form the
impedance to t th€ plane. The interested reader is furthermore referred to [4] for a netaded study.

Consider a coordinate system in the complex impedance plane. The rteRlgfarach impedance
is assigned to the vertical axis and the imaginary parbf each impedance to the horizontal axis
(Fig. A.1) For reasons of simplicity, allimpedances used in this calculatiomainealized to an impedance

Im(2)

z = 3.54j3

\\\\\Re(Z)
1 2 3 4 5

Fig. A.1: The complex impedance plane.

Zp. This leads to the simplified transformation between impedancé’ satahe:

z—1
I = A.l
z+1 (A-1)

T" is a complex number itselff® = a-+jc. Using this identity and substituting= R+ jX in equation
(A.1) one obtains:

z—1 R4+jX -1 :
r— i - A2
41 Rtjx 1 4TI (A-2)

From this the real and the imaginary partlo€an be calculated in terms of a,&€,and X:

Re:a(R+1)—cX = R-1 (A.3)
Im:e¢(R+1)+aX = X (A.4)

A.1 Lines with constant real part
To consider lines with constant real part, one can extract an expndssi& from equation (A.4)

1
X =it (A5)
1—a
and substitute this into equation (A.3):
R R—-1
2 2
-2 =0 A.6
CEE TSR R (A-6)
Completing the square, one obtains the equation of a circle:
R \* 1
_ N A.7
(a 1+R> T T Ut Re A7)

From this equation following properties can be deduced:
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The center of each circle lies on the reat axis.
SinceZ; > 0, the center of each circle lies on the positive realaxis.
The radiug of each circle follows the equatign= % < 1.

1+R)?
The maximal radius is 1 faR = 0.

A.1l1 Examples

Here the circles for differenk values are calculated and depicted graphically to illustrate the transfor-
mation from thez to thel plane.

R = 0: This leads to the center coordinateg/¢g) = (%/0) =(0/0),p=15 =1
R=0.5: (c/c.) = (%/0) =(3/0),p = 1755 =

R=1:(clc,) = (ﬁ/o) =(3/0),p= 7
Rzzxgmgz(ﬁgm)z(%@%pzf%==
R=o0: (Cife) = (125/0) = (1/0), p = 1 =0

This leads to the circles depicted in Fig. A.2.

win

a & w NP

Im (2) Im (")
24
R=10 R=1 R =2
14
R=0 R =
L pRe ) A Re ()
—1 4
—92 o

Fig. A.2: Lines of constant real part transformed into thplane.

A.2 Lines with constant imaginary part

To calculate the circles in the Smith chart that correspond to the lines of abirsiginary part in the
impedance plane, the formulas (A.3) and (A.4) are used again. Only this tiexpagssion folR and R
+ 1 is calculated from formula (A.3)

1—cX 2—cX
R=2T17Y gndi4+R=2"F¢ (A.8)
1—a 1—a
and substituted into equation (A.4):
a2 —2a+1+4+E-25 =0 (A.9)

X
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Completing the square again leads to an equation of a circle:

2
(a—1)2+ <c — )1(> = % (A.10)

Examining this equation, the following properties can be deduced:

— The center of each circle lies on an axis parallel to the imaginary axis in ackstd 1.
— The first coordinate of each circle center is 1.

— The second coordinate of each circle cente}isjt can be smaller or bigger than 0 depending on
the value ofX.

— No circle intersects the real a — axis.
— The radiug of each circle i = ﬁ
— All circles contain the point (1/0).

A.21 Examples

In the following, examples for differenk values are calculated and depicted graphically to illustrate
the transformation of the lines with constant imaginary part in the impedance fgldine corresponding
circles in thel” plane.

1. X =-2: (c/c.) =

L X =1 (glc) = (1/%)
C X =2 (Glee) = (1/3) = (1/0.5), p = \71| =0.5
L X =00t (Cale) = (1/55) = (1/0), p= 15 = 0
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A graphical representation of the circles corresponding to these \ialge®n in Fig. A.3.
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Im (2)

X =2

X=0 R=Reg¢)

_ 1
X=-3
X=-1
X = -2

Fig. A.3: Lines of constant imaginary part transformed intokhglane.
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B Rulers around the Smith chart

Some Smith charts provide rulers at the bottom to determine other quantitiessubsideflection coef-
ficient such as the return loss, the attenuation, the reflection loss etc.rifirstouction of how to use
these rulers as well as a specific example for such a set of rulers istgive.

B.1 Instruction how to use the rulers

First, one has to take the modulus (= distance between the center of the Smithnththe point in the
chart referring to the impedance in question) of the reflection coefficileah impedance either with a
conventional ruler or better using a compass. Then refer to the cotgdieaoted to CENTER and go to
the left or for the other part of the rulers to the right (except for the &iiee which is marked ORIGIN
at the left which is the reference point of this ruler). The value in questionthen be read from the
corresponding scale.

B.2 Example of a set of rulers
A commonly used set of rulers that can be found below the Smith chart isteépic Fig. B.1. For

po
ORIGIN

Fig. B.1: Example for a set of rulers that can be found underneath thth$hmart.

further discussion, this ruler is split along the line marked center, to a lgftBE2) and a right part
(Fig. B.3) since they will be discussed separately for reasons of simpliditye upper part of the first
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Fig. B.2: Left part of the rulers depicted in Fig. B.1.

ruler in Fig. B.2 is marked SWR which refers to the Voltage Standing Wave RHEtie.range of values
is between one and infinity. One is for the matched case (center of the Smit}y oifanity is for total
reflection (boundary of the SC). The upper part is in linear scale, therlpart of this ruler is in dB,
noted as dBS (dB referred to Standing Wave Ratio). Example: SWR = i€sponds to 20 dBS, SWR
=100 corresponds to 40 dBS (voltage ratios, not power ratios).

The second ruler upper part, marked as RTN.LOSS = return loss in dBinticates the amount
of reflected wave expressed in dB. Thus, in the center of the Smith obiduing is reflected and the
return loss is infinite. At the boundary we have full reflection, thus a ndtass of O dB. The lower part

21



ALED PARAMETERS

TOWARD LOAD — — TOWARD GENERATOR
1 1 13 10 7 1 3 2 1
Y‘ HH‘T‘“}\Y\ Yl TlTlYTlTYllllll IIIIIIIIII IIIIII I| IIIIII IIIIIIIIII IIIIIII ||I II
3 3 4+ 3d 10 2
1

11 1.1 1.2 1.3 1.4 16 1.8 2
10 13ee

0.1 ( 8 1 1.3 3 a6
1l I B 1| 1 I O O T O T T B | Il
LIBL L I

] 1.1 1.2 1.3 1.4 1.3 L6 L7 L8 14 3 1 10 ==
1 8 0.7 0.6 0.3 4 0.3

)0 ) ) 3 0 1
11 ) E— § I N S S S —— 1 1 1 1 1 1 1 | NN S N N [ — — — — —

F
CENTEI a7

30 =0 Z 0.4

1 1.1 1.2 3 1.4 1 1.6 LY )
T N T T T Y T T T T Tt T T Y T A T O T T Y T T Y T

Fig. B.3: Right part of the rulers depicted in Fig. B.1.

of the scale denoted as RFL.COEFF. P = reflection coefficient in terms \WER(proportionall'|?).
There is no reflected power for the matched case (center of the Smith elmarg) (normalized) reflected
power =1 at the boundary.

The third ruler is marked as RFL.COEFF,E or I. Whit this, the modulus (= atesellue) of the
reflection coefficient can be determined in linear scale. Note that sinceaweethe modulus we can
refer it both to voltage or current as we have omitted the sign, we just usedtielus. Obviously in the
center the reflection coefficient is zero, while at the boundary it is one.

The fourth ruler is the Voltage transmission coefficient. Note that the modtithe eoltage (and
current) transmission coefficient has a range from zero, i.e. shouitito +2 (open = 1f'| with |I'|=1).
This ruler is only valid forZjoaq = real, i.e. the case of a step in characteristic impedance of the coaxial
line.

The upper part of the first ruler in Fig. B.3, denoted as ATTEN. in dBiaes that an attenuator
(that may be a lossy line) is measured which itself is terminated by an openrocshait (full reflec-
tion). Thus the wave is travelling twice through the attenuator (forward acévibard). The value of
this attenuator can be between zero and some very high number codegptinthe matched case. The
lower scale of this ruler displays the same situation just in terms of VSWR. Examfpl@dB attenuator
attenuates the reflected wave by 20dB going forth and back and we gfigtion coefficient of'=0.1
(= 10% in voltage).

The upper part of the second ruler, denoted as RFL.LOSS in dB igirgfeéo the reflection loss.
This is the loss in the transmitted wave, not to be confounded with the retunefessng to the reflected
wave. It displays the relatioR;, = 1 — |I'|? in dB. Example: If|T'| = 1/4/2 = 0.707 the transmitted
power is 50% and thus the loss is 50% = 3dB.

Third ruler / right, marked as TRANSM.COEFF.P refers to the transmitted pasva function of
mismatch and displays essentially the relatigr= 1 — |T'|2. Thus, in the center of the Smith chart there
is a full match and all the power is transmitted. At the boundary there is totattiefh and e.g. for &
value of 0.5 75% of the incident power is transmitted.
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