chore: _
This commit is contained in:
@@ -2,6 +2,9 @@
|
||||
|
||||
## Installation
|
||||
|
||||
just run `chmod +x setup.sh && ./setup.sh` on pod.
|
||||
remeber to `export HF_HOME=/worspace/hf` (to the pvc on the whatever pod)
|
||||
|
||||
1. Clone the repository:
|
||||
|
||||
```bash
|
||||
|
||||
29
config.py
29
config.py
@@ -9,7 +9,7 @@ class DataConfig:
|
||||
Translation:
|
||||
{}"""
|
||||
train_split: float = 0.95
|
||||
max_samples: int | None = 5000
|
||||
max_samples: int | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -31,11 +31,11 @@ class TrainingConfig:
|
||||
base_model: str = "unsloth/Qwen2.5-7B"
|
||||
max_seq_length: int = 6144
|
||||
dtype: str | None = None
|
||||
load_in_4bit: bool = True
|
||||
load_in_4bit: bool = False
|
||||
|
||||
# LoRA
|
||||
lora_r: int = 64
|
||||
lora_alpha: int = 128
|
||||
lora_r: int = 16
|
||||
lora_alpha: int = 32
|
||||
lora_dropout: float = 0
|
||||
target_modules: list[str] = field(
|
||||
default_factory=lambda: [
|
||||
@@ -49,18 +49,19 @@ class TrainingConfig:
|
||||
]
|
||||
)
|
||||
use_gradient_checkpointing: str = "unsloth"
|
||||
random_state: int = 3407
|
||||
random_state: int = 42
|
||||
use_rslora: bool = False
|
||||
loftq_config: dict | None = None
|
||||
|
||||
# training args
|
||||
per_device_train_batch_size: int = 16
|
||||
gradient_accumulation_steps: int = 2
|
||||
warmup_ratio: float = 0.1
|
||||
gradient_accumulation_steps: int = 4
|
||||
# warmup_ratio: float = 0.1
|
||||
warmup_steps: int = 80
|
||||
max_grad_norm: float = 1.0
|
||||
num_train_epochs: float = 1
|
||||
learning_rate: float = 5e-4
|
||||
weight_decay: float = 0.01
|
||||
num_train_epochs: float = 3
|
||||
learning_rate: float = 1e-5
|
||||
weight_decay: float = 0.001
|
||||
lr_scheduler_type: str = "cosine"
|
||||
logging_steps: int = 1
|
||||
|
||||
@@ -70,15 +71,15 @@ class TrainingConfig:
|
||||
save_total_limit: int | None = 3
|
||||
|
||||
# dataset
|
||||
dataset_num_proc: int = 4
|
||||
dataset_num_proc: int = 8
|
||||
packing: bool = True
|
||||
|
||||
# eval
|
||||
fp16_full_eval: bool = True
|
||||
per_device_eval_batch_size: int = 8
|
||||
eval_accumulation_steps: int = 2
|
||||
per_device_eval_batch_size: int = 16
|
||||
eval_accumulation_steps: int = 1
|
||||
eval_strategy: str = "steps"
|
||||
eval_steps: int = 10
|
||||
eval_steps: int = 100
|
||||
|
||||
# output
|
||||
output_dir: str = "/workspace/output/"
|
||||
|
||||
14
main.py
14
main.py
@@ -86,14 +86,16 @@ def run_sweep(base_config: TrainingConfig, dataset_path: str):
|
||||
"parameters": {
|
||||
"learning_rate": {
|
||||
"distribution": "log_uniform_values",
|
||||
"min": 1e-5,
|
||||
"max": 1e-4,
|
||||
"min": 1e-7,
|
||||
"max": 1e-5,
|
||||
},
|
||||
"lora_r": {"values": [8]},
|
||||
"lora_alpha": {"values": [16]},
|
||||
"per_device_train_batch_size": {"values": [16]},
|
||||
"gradient_accumulation_steps": {"values": [2]},
|
||||
"lora_r": {"values": [32]},
|
||||
"lora_alpha": {"values": [64]},
|
||||
"per_device_train_batch_size": {"values": [32]},
|
||||
"gradient_accumulation_steps": {"values": [4, 8]},
|
||||
"num_train_epochs": {"values": [1]},
|
||||
"warmup_steps": {"values": [10]},
|
||||
"max_grad_norm": {"values": [0.1, 0.3, 0.5]},
|
||||
},
|
||||
"early_terminate": {"type": "hyperband", "min_iter": 100},
|
||||
}
|
||||
|
||||
1
setup.sh
1
setup.sh
@@ -1,7 +1,6 @@
|
||||
#!/bin/sh
|
||||
|
||||
set -eu
|
||||
set -o pipefail
|
||||
|
||||
# constants
|
||||
WORKSPACE_DIR="/workspace"
|
||||
|
||||
@@ -55,7 +55,8 @@ class CustomTrainer:
|
||||
output_dir=self.config.output_dir,
|
||||
per_device_train_batch_size=self.config.per_device_train_batch_size,
|
||||
gradient_accumulation_steps=self.config.gradient_accumulation_steps,
|
||||
warmup_ratio=self.config.warmup_ratio,
|
||||
# warmup_ratio=self.config.warmup_ratio,
|
||||
warmup_steps=self.config.warmup_steps,
|
||||
max_grad_norm=self.config.max_grad_norm,
|
||||
num_train_epochs=self.config.num_train_epochs,
|
||||
learning_rate=self.config.learning_rate,
|
||||
|
||||
Reference in New Issue
Block a user