chore: up
This commit is contained in:
55
config.py
55
config.py
@@ -1,64 +1,73 @@
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataConfig:
|
||||
# Default configuration
|
||||
template: str = """Translate this Chinese text to English:
|
||||
{}
|
||||
{input}
|
||||
===
|
||||
Translation:
|
||||
{}"""
|
||||
{output}"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class WandBConfig:
|
||||
enabled: bool = True
|
||||
project: str = "lora-training"
|
||||
project: str | None = None
|
||||
name: str | None = None
|
||||
entity: str | None = None
|
||||
tags: list[str] = []
|
||||
tags: list[str] = field(default_factory=list)
|
||||
notes: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingConfig:
|
||||
wandb: WandBConfig = WandBConfig()
|
||||
data: DataConfig = DataConfig()
|
||||
wandb: WandBConfig = field(default_factory=WandBConfig)
|
||||
data: DataConfig = field(default_factory=DataConfig)
|
||||
|
||||
# model
|
||||
base_model: str = "unsloth/Qwen2.5-7B"
|
||||
max_seq_length: int = 6144
|
||||
dtype: str | None = None
|
||||
load_in_4bit: bool = True
|
||||
load_in_4bit: bool = False
|
||||
|
||||
# LoRA
|
||||
lora_r: int = 16
|
||||
lora_alpha: int = 16
|
||||
lora_r: int = 256
|
||||
lora_alpha: int = 512
|
||||
lora_dropout: float = 0
|
||||
target_modules: list[str] = []
|
||||
target_modules: list[str] = field(
|
||||
default_factory=lambda: [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
"o_proj",
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
"down_proj",
|
||||
]
|
||||
)
|
||||
use_gradient_checkpointing: str = "unsloth"
|
||||
random_state: int = 3407
|
||||
use_rslora: bool = False
|
||||
loftq_config: dict | None = None
|
||||
|
||||
# training args
|
||||
per_device_train_batch_size: int = 32
|
||||
gradient_accumulation_steps: int = 1
|
||||
warmup_ratio: float = 0.05
|
||||
per_device_train_batch_size: int = 16
|
||||
gradient_accumulation_steps: int = 2
|
||||
warmup_ratio: float = 0.03
|
||||
max_grad_norm: float = 1.0
|
||||
num_train_epochs: float = 0.5
|
||||
learning_rate: float = 3e-5
|
||||
weight_decay: float = 0.05
|
||||
lr_scheduler_type: str = "linear"
|
||||
logging_steps: int = 5
|
||||
num_train_epochs: float = 1
|
||||
learning_rate: float = 5e-4
|
||||
weight_decay: float = 0
|
||||
lr_scheduler_type: str = "cosine"
|
||||
logging_steps: int = 1
|
||||
|
||||
# dataset
|
||||
dataset_num_proc: int = 2
|
||||
packing: bool = False
|
||||
dataset_num_proc: int = 8
|
||||
packing: bool = True
|
||||
|
||||
# output
|
||||
output_dir: str = "/output/"
|
||||
output_dir: str = "/workspace/output/"
|
||||
|
||||
def __post_init__(self):
|
||||
if not self.target_modules:
|
||||
|
||||
6
main.py
6
main.py
@@ -10,9 +10,7 @@ def parse_args():
|
||||
|
||||
# wandb args
|
||||
wandb_group = parser.add_argument_group("Weights & Biases")
|
||||
wandb_group.add_argument(
|
||||
"--wandb_project", type=str, default="lora-training", help="WandB project name"
|
||||
)
|
||||
wandb_group.add_argument("--wandb_project", type=str, help="WandB project name")
|
||||
wandb_group.add_argument("--wandb_name", type=str, help="WandB run name")
|
||||
wandb_group.add_argument("--wandb_entity", type=str, help="WandB entity/username")
|
||||
wandb_group.add_argument(
|
||||
@@ -42,7 +40,7 @@ def main():
|
||||
try:
|
||||
wandb_config = WandBConfig(
|
||||
enabled=args.wandb_project is not None,
|
||||
project=args.wandb_project or "lora-training",
|
||||
project=args.wandb_project,
|
||||
name=args.wandb_name,
|
||||
entity=args.wandb_entity,
|
||||
tags=args.wandb_tags,
|
||||
|
||||
@@ -65,6 +65,9 @@ class CustomTrainer:
|
||||
bf16=torch.cuda.is_bf16_supported(),
|
||||
optim="adamw_8bit",
|
||||
report_to=report_to,
|
||||
save_strategy="steps",
|
||||
save_steps=50,
|
||||
save_total_limit=3,
|
||||
)
|
||||
|
||||
return SFTTrainer(
|
||||
|
||||
Reference in New Issue
Block a user