chore: trainer
This commit is contained in:
123
trainer.py
Normal file
123
trainer.py
Normal file
@@ -0,0 +1,123 @@
|
||||
from transformers import TrainingArguments
|
||||
from trl import SFTTrainer
|
||||
import torch
|
||||
from config import TrainingConfig
|
||||
|
||||
|
||||
class CustomTrainer:
|
||||
def __init__(self, config: TrainingConfig):
|
||||
self.config = config
|
||||
self._setup_gpu_tracking()
|
||||
|
||||
def _setup_gpu_tracking(self):
|
||||
self.gpu_stats = torch.cuda.get_device_properties(0)
|
||||
self.start_gpu_memory = round(
|
||||
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3
|
||||
)
|
||||
self.max_memory = round(self.gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
||||
|
||||
def _setup_wandb(self):
|
||||
if self.config.wandb.enabled:
|
||||
try:
|
||||
import wandb
|
||||
|
||||
# Initialize wandb
|
||||
wandb.init(
|
||||
project=self.config.wandb.project,
|
||||
name=self.config.wandb.name,
|
||||
entity=self.config.wandb.entity,
|
||||
tags=self.config.wandb.tags,
|
||||
notes=self.config.wandb.notes,
|
||||
config={
|
||||
"model": self.config.base_model,
|
||||
"lora_r": self.config.lora_r,
|
||||
"lora_alpha": self.config.lora_alpha,
|
||||
"learning_rate": self.config.learning_rate,
|
||||
"batch_size": self.config.per_device_train_batch_size,
|
||||
"epochs": self.config.num_train_epochs,
|
||||
},
|
||||
)
|
||||
return ["wandb"]
|
||||
except ImportError:
|
||||
print(
|
||||
"Warning: wandb not installed. Run `pip install wandb` to enable logging."
|
||||
)
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"Warning: Failed to initialize wandb: {e}")
|
||||
return None
|
||||
return None
|
||||
|
||||
def create_trainer(self, model, tokenizer, dataset) -> SFTTrainer:
|
||||
report_to = self._setup_wandb()
|
||||
training_args = TrainingArguments(
|
||||
output_dir=self.config.output_dir,
|
||||
per_device_train_batch_size=self.config.per_device_train_batch_size,
|
||||
gradient_accumulation_steps=self.config.gradient_accumulation_steps,
|
||||
warmup_ratio=self.config.warmup_ratio,
|
||||
max_grad_norm=self.config.max_grad_norm,
|
||||
num_train_epochs=self.config.num_train_epochs,
|
||||
learning_rate=self.config.learning_rate,
|
||||
weight_decay=self.config.weight_decay,
|
||||
lr_scheduler_type=self.config.lr_scheduler_type,
|
||||
logging_steps=self.config.logging_steps,
|
||||
fp16=not torch.cuda.is_bf16_supported(),
|
||||
bf16=torch.cuda.is_bf16_supported(),
|
||||
optim="adamw_8bit",
|
||||
report_to=report_to,
|
||||
)
|
||||
|
||||
return SFTTrainer(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
max_seq_length=self.config.max_seq_length,
|
||||
dataset_num_proc=self.config.dataset_num_proc,
|
||||
packing=self.config.packing,
|
||||
args=training_args,
|
||||
)
|
||||
|
||||
def train_and_log(self, trainer: SFTTrainer) -> dict:
|
||||
print(f"GPU = {self.gpu_stats.name}. Max memory = {self.max_memory} GB.")
|
||||
print(f"{self.start_gpu_memory} GB of memory reserved.")
|
||||
|
||||
trainer_stats = trainer.train()
|
||||
self._log_training_stats(trainer_stats)
|
||||
return trainer_stats
|
||||
|
||||
def _log_training_stats(self, trainer_stats):
|
||||
try:
|
||||
import wandb
|
||||
except ImportError:
|
||||
wandb = None
|
||||
|
||||
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
||||
used_memory_for_lora = round(used_memory - self.start_gpu_memory, 3)
|
||||
used_percentage = round(used_memory / self.max_memory * 100, 3)
|
||||
lora_percentage = round(used_memory_for_lora / self.max_memory * 100, 3)
|
||||
|
||||
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
||||
print(
|
||||
f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training."
|
||||
)
|
||||
print(f"Peak reserved memory = {used_memory} GB.")
|
||||
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
||||
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
||||
print(
|
||||
f"Peak reserved memory for training % of max memory = {lora_percentage} %."
|
||||
)
|
||||
|
||||
if wandb and self.config.wandb.enabled:
|
||||
wandb.log(
|
||||
{
|
||||
"training_time_seconds": trainer_stats.metrics["train_runtime"],
|
||||
"training_time_minutes": round(
|
||||
trainer_stats.metrics["train_runtime"] / 60, 2
|
||||
),
|
||||
"peak_memory_gb": used_memory,
|
||||
"training_memory_gb": used_memory_for_lora,
|
||||
"peak_memory_percentage": used_percentage,
|
||||
"training_memory_percentage": lora_percentage,
|
||||
}
|
||||
)
|
||||
Reference in New Issue
Block a user