chore: _
This commit is contained in:
20
config.py
20
config.py
@@ -8,8 +8,8 @@ class DataConfig:
|
||||
---
|
||||
Translation:
|
||||
{}"""
|
||||
train_split: float = 0.9
|
||||
max_samples: int | None = 3000
|
||||
train_split: float = 0.95
|
||||
max_samples: int | None = 5000
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -31,7 +31,7 @@ class TrainingConfig:
|
||||
base_model: str = "unsloth/Qwen2.5-7B"
|
||||
max_seq_length: int = 6144
|
||||
dtype: str | None = None
|
||||
load_in_4bit: bool = False
|
||||
load_in_4bit: bool = True
|
||||
|
||||
# LoRA
|
||||
lora_r: int = 64
|
||||
@@ -48,7 +48,7 @@ class TrainingConfig:
|
||||
"down_proj",
|
||||
]
|
||||
)
|
||||
use_gradient_checkpointing: str = "unsloth"
|
||||
use_gradient_checkpointing: str = True
|
||||
random_state: int = 3407
|
||||
use_rslora: bool = False
|
||||
loftq_config: dict | None = None
|
||||
@@ -56,11 +56,11 @@ class TrainingConfig:
|
||||
# training args
|
||||
per_device_train_batch_size: int = 16
|
||||
gradient_accumulation_steps: int = 2
|
||||
warmup_ratio: float = 0.05
|
||||
warmup_ratio: float = 0.1
|
||||
max_grad_norm: float = 1.0
|
||||
num_train_epochs: float = 1
|
||||
learning_rate: float = 5e-4
|
||||
weight_decay: float = 0
|
||||
weight_decay: float = 0.01
|
||||
lr_scheduler_type: str = "cosine"
|
||||
logging_steps: int = 1
|
||||
|
||||
@@ -70,15 +70,15 @@ class TrainingConfig:
|
||||
save_total_limit: int | None = 3
|
||||
|
||||
# dataset
|
||||
dataset_num_proc: int = 8
|
||||
dataset_num_proc: int = 4
|
||||
packing: bool = True
|
||||
|
||||
# eval
|
||||
fp16_full_eval: bool = True
|
||||
per_device_eval_batch_size: int = 16
|
||||
eval_accumulation_steps: int = 4
|
||||
per_device_eval_batch_size: int = 64
|
||||
eval_accumulation_steps: int = 1
|
||||
eval_strategy: str = "steps"
|
||||
eval_steps: int = 5
|
||||
eval_steps: int = 10
|
||||
|
||||
# output
|
||||
output_dir: str = "/workspace/output/"
|
||||
|
||||
60
main.py
60
main.py
@@ -84,72 +84,46 @@ def run_sweep(base_config: TrainingConfig, dataset_path: str):
|
||||
"method": "bayes",
|
||||
"metric": {"name": "val_loss", "goal": "minimize"},
|
||||
"parameters": {
|
||||
"base_learning_rate": {
|
||||
"learning_rate": {
|
||||
"distribution": "log_uniform_values",
|
||||
"min": 1e-5,
|
||||
"max": 1e-3,
|
||||
"max": 1e-4,
|
||||
},
|
||||
"lora_r": {"values": [32, 64]},
|
||||
# "lora_alpha": {"values": [16, 32, 64, 128]},
|
||||
"per_device_train_batch_size": {"values": [16]},
|
||||
"gradient_accumulation_steps": {"values": [2, 4, 8]},
|
||||
"lora_r": {"values": [32]},
|
||||
"lora_alpha": {"values": [64]},
|
||||
"per_device_train_batch_size": {"values": [64]},
|
||||
"gradient_accumulation_steps": {"values": [1]},
|
||||
"num_train_epochs": {"values": [1]},
|
||||
},
|
||||
"early_terminate": {"type": "hyperband", "min_iter": 100},
|
||||
}
|
||||
|
||||
sweep_id = wandb.sweep(sweep_config, project=base_config.wandb.project)
|
||||
|
||||
def compute_scaled_config(config_dict: dict) -> dict:
|
||||
base_batch_size = config_dict["per_device_train_batch_size"] # 16
|
||||
effective_batch_size = (
|
||||
config_dict["per_device_train_batch_size"]
|
||||
* config_dict["gradient_accumulation_steps"]
|
||||
)
|
||||
|
||||
# apply square root scaling for Adam
|
||||
lr_scale_factor = (effective_batch_size / base_batch_size) ** 0.5
|
||||
|
||||
# scale the learning rate
|
||||
config_dict["learning_rate"] = (
|
||||
config_dict["base_learning_rate"] * lr_scale_factor
|
||||
)
|
||||
|
||||
config_dict["effective_batch_size"] = effective_batch_size
|
||||
config_dict["lr_scale_factor"] = lr_scale_factor
|
||||
config_dict["lora_alpha"] = 2 * wandb.config.lora_r
|
||||
|
||||
del config_dict["base_learning_rate"]
|
||||
|
||||
return config_dict
|
||||
|
||||
def sweep_train():
|
||||
with wandb.init() as run:
|
||||
# Convert base config to dict
|
||||
config_dict = (
|
||||
asdict(base_config)
|
||||
if hasattr(base_config, "__dataclass_fields__")
|
||||
else base_config.__dict__.copy()
|
||||
)
|
||||
|
||||
# Update with sweep parameters
|
||||
config_dict.update(wandb.config)
|
||||
config_dict = compute_scaled_config(config_dict)
|
||||
|
||||
wandb.log(
|
||||
{
|
||||
"effective_batch_size": config_dict["effective_batch_size"],
|
||||
"lr_scale_factor": config_dict["lr_scale_factor"],
|
||||
"scaled_learning_rate": config_dict["learning_rate"],
|
||||
"lora_alpha": config_dict["lora_alpha"],
|
||||
}
|
||||
# Set lora_alpha based on lora_r
|
||||
# config_dict["lora_alpha"] = 2 * config_dict["lora_r"]
|
||||
|
||||
# Log effective batch size for monitoring
|
||||
effective_batch_size = (
|
||||
config_dict["per_device_train_batch_size"]
|
||||
* config_dict["gradient_accumulation_steps"]
|
||||
)
|
||||
wandb.log({"effective_batch_size": effective_batch_size})
|
||||
|
||||
config_dict.pop("effective_batch_size")
|
||||
config_dict.pop("lr_scale_factor")
|
||||
|
||||
run_config = TrainingConfig(**config_dict)
|
||||
# Create training config and run
|
||||
run_config = reconstruct_dataclass(TrainingConfig, config_dict)
|
||||
print(run_config)
|
||||
|
||||
train_single_run(run_config, dataset_path)
|
||||
|
||||
wandb.agent(sweep_id, function=sweep_train)
|
||||
|
||||
Reference in New Issue
Block a user