This commit is contained in:
2025-02-15 00:59:47 +06:00
parent 39e69c90b1
commit fc9c04fe9c
2 changed files with 27 additions and 53 deletions

View File

@@ -8,8 +8,8 @@ class DataConfig:
---
Translation:
{}"""
train_split: float = 0.9
max_samples: int | None = 3000
train_split: float = 0.95
max_samples: int | None = 5000
@dataclass
@@ -31,7 +31,7 @@ class TrainingConfig:
base_model: str = "unsloth/Qwen2.5-7B"
max_seq_length: int = 6144
dtype: str | None = None
load_in_4bit: bool = False
load_in_4bit: bool = True
# LoRA
lora_r: int = 64
@@ -48,7 +48,7 @@ class TrainingConfig:
"down_proj",
]
)
use_gradient_checkpointing: str = "unsloth"
use_gradient_checkpointing: str = True
random_state: int = 3407
use_rslora: bool = False
loftq_config: dict | None = None
@@ -56,11 +56,11 @@ class TrainingConfig:
# training args
per_device_train_batch_size: int = 16
gradient_accumulation_steps: int = 2
warmup_ratio: float = 0.05
warmup_ratio: float = 0.1
max_grad_norm: float = 1.0
num_train_epochs: float = 1
learning_rate: float = 5e-4
weight_decay: float = 0
weight_decay: float = 0.01
lr_scheduler_type: str = "cosine"
logging_steps: int = 1
@@ -70,15 +70,15 @@ class TrainingConfig:
save_total_limit: int | None = 3
# dataset
dataset_num_proc: int = 8
dataset_num_proc: int = 4
packing: bool = True
# eval
fp16_full_eval: bool = True
per_device_eval_batch_size: int = 16
eval_accumulation_steps: int = 4
per_device_eval_batch_size: int = 64
eval_accumulation_steps: int = 1
eval_strategy: str = "steps"
eval_steps: int = 5
eval_steps: int = 10
# output
output_dir: str = "/workspace/output/"

60
main.py
View File

@@ -84,72 +84,46 @@ def run_sweep(base_config: TrainingConfig, dataset_path: str):
"method": "bayes",
"metric": {"name": "val_loss", "goal": "minimize"},
"parameters": {
"base_learning_rate": {
"learning_rate": {
"distribution": "log_uniform_values",
"min": 1e-5,
"max": 1e-3,
"max": 1e-4,
},
"lora_r": {"values": [32, 64]},
# "lora_alpha": {"values": [16, 32, 64, 128]},
"per_device_train_batch_size": {"values": [16]},
"gradient_accumulation_steps": {"values": [2, 4, 8]},
"lora_r": {"values": [32]},
"lora_alpha": {"values": [64]},
"per_device_train_batch_size": {"values": [64]},
"gradient_accumulation_steps": {"values": [1]},
"num_train_epochs": {"values": [1]},
},
"early_terminate": {"type": "hyperband", "min_iter": 100},
}
sweep_id = wandb.sweep(sweep_config, project=base_config.wandb.project)
def compute_scaled_config(config_dict: dict) -> dict:
base_batch_size = config_dict["per_device_train_batch_size"] # 16
effective_batch_size = (
config_dict["per_device_train_batch_size"]
* config_dict["gradient_accumulation_steps"]
)
# apply square root scaling for Adam
lr_scale_factor = (effective_batch_size / base_batch_size) ** 0.5
# scale the learning rate
config_dict["learning_rate"] = (
config_dict["base_learning_rate"] * lr_scale_factor
)
config_dict["effective_batch_size"] = effective_batch_size
config_dict["lr_scale_factor"] = lr_scale_factor
config_dict["lora_alpha"] = 2 * wandb.config.lora_r
del config_dict["base_learning_rate"]
return config_dict
def sweep_train():
with wandb.init() as run:
# Convert base config to dict
config_dict = (
asdict(base_config)
if hasattr(base_config, "__dataclass_fields__")
else base_config.__dict__.copy()
)
# Update with sweep parameters
config_dict.update(wandb.config)
config_dict = compute_scaled_config(config_dict)
wandb.log(
{
"effective_batch_size": config_dict["effective_batch_size"],
"lr_scale_factor": config_dict["lr_scale_factor"],
"scaled_learning_rate": config_dict["learning_rate"],
"lora_alpha": config_dict["lora_alpha"],
}
# Set lora_alpha based on lora_r
# config_dict["lora_alpha"] = 2 * config_dict["lora_r"]
# Log effective batch size for monitoring
effective_batch_size = (
config_dict["per_device_train_batch_size"]
* config_dict["gradient_accumulation_steps"]
)
wandb.log({"effective_batch_size": effective_batch_size})
config_dict.pop("effective_batch_size")
config_dict.pop("lr_scale_factor")
run_config = TrainingConfig(**config_dict)
# Create training config and run
run_config = reconstruct_dataclass(TrainingConfig, config_dict)
print(run_config)
train_single_run(run_config, dataset_path)
wandb.agent(sweep_id, function=sweep_train)