import os from typing import Any from datasets import Dataset, load_dataset from transformers import PreTrainedTokenizer class DataLoader: def __init__(self, tokenizer: PreTrainedTokenizer, template: str): self.tokenizer = tokenizer self._template = template def load_dataset(self, path: str) -> Dataset: """Load dataset from local path or Google Drive""" if "drive.google.com" in str(path): try: import gdown local_path = "downloaded_dataset.json" if not os.path.exists(local_path): gdown.download(url=path, output=local_path, fuzzy=True) dataset_path = local_path except ImportError: raise ImportError("Please install gdown: pip install gdown") except Exception as e: raise Exception(f"Error downloading from Google Drive: {e}") else: dataset_path = path try: dataset = load_dataset("json", data_files=dataset_path, split="train") return self.process_dataset(dataset) except Exception as e: raise Exception(f"Error loading dataset: {e}") def process_dataset(self, dataset: Dataset) -> Dataset: """Process and format the dataset""" def formatting_func(examples: dict[str, Any]) -> dict[str, list[str]]: inputs: list[str] = examples["input"] outputs: list[str] = examples["output"] texts: list[str] = [] for input, output in zip(inputs, outputs): text = ( self._template.format(input=input, output=output) + self.tokenizer.eos_token ) texts.append(text) return {"text": texts} return dataset.map(formatting_func, batched=True)