Files
unsloth-train-scripts/data_loader.py
2025-02-14 23:53:46 +06:00

72 lines
2.5 KiB
Python

import os
from typing import Any
from config import DataConfig
from datasets import Dataset, load_dataset
from transformers import PreTrainedTokenizer
class DataLoader:
def __init__(self, tokenizer: PreTrainedTokenizer, data_config: DataConfig):
self.tokenizer = tokenizer
self.data_config = data_config
# self._template = template
def load_dataset(self, path: str) -> Dataset:
"""Load dataset from local path or Google Drive"""
if "drive.google.com" in str(path):
try:
import gdown
local_path = "downloaded_dataset.json"
if not os.path.exists(local_path):
gdown.download(url=path, output=local_path, fuzzy=True)
dataset_path = local_path
except ImportError:
raise ImportError("Please install gdown: pip install gdown")
except Exception as e:
raise Exception(f"Error downloading from Google Drive: {e}")
else:
dataset_path = path
try:
dataset = load_dataset("json", data_files=dataset_path, split="train")
print(self.data_config)
print(f"Dataset size before processing: {len(dataset)}")
if (max_size := self.data_config.max_samples) is not None:
dataset = dataset.select(range(min(len(dataset), max_size)))
# dataset.save_to_disk("/workspace/truncated_dataset")
processed_dataset = self.process_dataset(dataset)
print(f"Dataset size after processing: {len(processed_dataset)}")
# processed_dataset.save_to_disk("/workspace/processed_dataset")
# train/test split
split_dataset = processed_dataset.train_test_split(
test_size=(1 - self.data_config.train_split), shuffle=False
)
return split_dataset
except Exception as e:
raise Exception(f"Error loading dataset: {e}")
def process_dataset(self, dataset: Dataset) -> Dataset:
"""Process and format the dataset"""
EOS_TOKEN = self.tokenizer.eos_token
template = self.data_config.template
def formatting_func(examples):
inputs = examples["input"]
outputs = examples["output"]
texts = []
for inp, out in zip(inputs, outputs):
text = template.format(inp, out) + EOS_TOKEN
texts.append(text)
return {"text": texts}
return dataset.map(formatting_func, batched=True)