Files
unsloth-train-scripts/trainer.py
2025-02-15 05:41:51 +06:00

130 lines
5.4 KiB
Python

from transformers import TrainingArguments
from trl import SFTTrainer
import torch
from config import TrainingConfig
class CustomTrainer:
def __init__(self, config: TrainingConfig):
self.config = config
self._setup_gpu_tracking()
self.wandb = None
if self.config.wandb.enabled:
try:
import wandb
self.wandb = wandb
except ImportError:
print(
"Warning: wandb not installed. Run `pip install wandb` to enable logging."
)
except Exception as e:
print(f"Warning: Failed to initialize wandb: {e}")
def _setup_gpu_tracking(self):
self.gpu_stats = torch.cuda.get_device_properties(0)
self.start_gpu_memory = round(
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3
)
self.max_memory = round(self.gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
def _setup_wandb(self):
if self.config.wandb.enabled and self.wandb and self.wandb.run is None:
# Initialize wandb
self.wandb.init(
project=self.config.wandb.project,
name=self.config.wandb.name,
entity=self.config.wandb.entity,
tags=self.config.wandb.tags,
notes=self.config.wandb.notes,
config={
"model": self.config.base_model,
"lora_r": self.config.lora_r,
"lora_alpha": self.config.lora_alpha,
"learning_rate": self.config.learning_rate,
"batch_size": self.config.per_device_train_batch_size,
"epochs": self.config.num_train_epochs,
},
)
return ["wandb"]
return None
def create_trainer(self, model, tokenizer, dataset) -> SFTTrainer:
report_to = self._setup_wandb()
training_args = TrainingArguments(
output_dir=self.config.output_dir,
per_device_train_batch_size=self.config.per_device_train_batch_size,
gradient_accumulation_steps=self.config.gradient_accumulation_steps,
# warmup_ratio=self.config.warmup_ratio,
warmup_steps=self.config.warmup_steps,
max_grad_norm=self.config.max_grad_norm,
num_train_epochs=self.config.num_train_epochs,
learning_rate=self.config.learning_rate,
weight_decay=self.config.weight_decay,
lr_scheduler_type=self.config.lr_scheduler_type,
logging_steps=self.config.logging_steps,
fp16=not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_bf16_supported(),
optim="adamw_8bit",
report_to=report_to,
save_strategy=self.config.save_strategy,
save_steps=self.config.save_steps,
save_total_limit=self.config.save_total_limit,
fp16_full_eval=self.config.fp16_full_eval,
per_device_eval_batch_size=self.config.per_device_eval_batch_size,
eval_accumulation_steps=self.config.eval_accumulation_steps,
eval_strategy=self.config.eval_strategy,
eval_steps=self.config.eval_steps,
)
return SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
dataset_text_field="text",
max_seq_length=self.config.max_seq_length,
dataset_num_proc=self.config.dataset_num_proc,
packing=self.config.packing,
args=training_args,
)
def train_and_log(self, trainer: SFTTrainer) -> dict:
print(f"GPU = {self.gpu_stats.name}. Max memory = {self.max_memory} GB.")
print(f"{self.start_gpu_memory} GB of memory reserved.")
trainer_stats = trainer.train()
self._log_training_stats(trainer_stats)
return trainer_stats
def _log_training_stats(self, trainer_stats):
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - self.start_gpu_memory, 3)
used_percentage = round(used_memory / self.max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / self.max_memory * 100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(
f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training."
)
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(
f"Peak reserved memory for training % of max memory = {lora_percentage} %."
)
if self.wandb and self.config.wandb.enabled:
self.wandb.log(
{
"training_time_seconds": trainer_stats.metrics["train_runtime"],
"training_time_minutes": round(
trainer_stats.metrics["train_runtime"] / 60, 2
),
"peak_memory_gb": used_memory,
"training_memory_gb": used_memory_for_lora,
"peak_memory_percentage": used_percentage,
"training_memory_percentage": lora_percentage,
}
)