chore: wip torchtune, dataset merger
This commit is contained in:
125
merger.py
Executable file
125
merger.py
Executable file
@@ -0,0 +1,125 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
from collections.abc import Sequence
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import TypedDict
|
||||||
|
|
||||||
|
|
||||||
|
class AlpacaEntry(TypedDict):
|
||||||
|
input: str
|
||||||
|
output: str
|
||||||
|
instruction: str | None
|
||||||
|
|
||||||
|
|
||||||
|
class Args(argparse.Namespace):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.file1: str = ""
|
||||||
|
self.file2: str = ""
|
||||||
|
self.output: str = ""
|
||||||
|
self.shuffle: bool = False
|
||||||
|
self.seed: int | None = None
|
||||||
|
self.omit_instruction: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
def load_file(file_path: str) -> Sequence[AlpacaEntry]:
|
||||||
|
"""Load and validate a file in JSON or JSONL format."""
|
||||||
|
path = Path(file_path)
|
||||||
|
is_jsonl = path.suffix.lower() in (".jsonl", ".ljson")
|
||||||
|
|
||||||
|
with open(file_path, "r", encoding="utf-8") as f:
|
||||||
|
if is_jsonl:
|
||||||
|
data: list[AlpacaEntry] = []
|
||||||
|
for line in f:
|
||||||
|
line = line.strip()
|
||||||
|
if line: # Skip empty lines
|
||||||
|
entry: AlpacaEntry = json.loads(line)
|
||||||
|
data.append(entry)
|
||||||
|
else:
|
||||||
|
data = json.load(f)
|
||||||
|
|
||||||
|
# Validate required fields
|
||||||
|
for item in data:
|
||||||
|
if not all(key in item for key in ["input", "output"]):
|
||||||
|
raise ValueError(
|
||||||
|
f"Missing required fields in {file_path}. Each item must have 'input' and 'output' fields."
|
||||||
|
)
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def write_output(data: Sequence[AlpacaEntry], output_path: str) -> None:
|
||||||
|
"""Write output in JSON or JSONL format based on file extension."""
|
||||||
|
path = Path(output_path)
|
||||||
|
is_jsonl = path.suffix.lower() in (".jsonl", ".ljson")
|
||||||
|
print(path, is_jsonl)
|
||||||
|
|
||||||
|
with open(output_path, "w", encoding="utf-8") as f:
|
||||||
|
if is_jsonl:
|
||||||
|
for item in data:
|
||||||
|
_ = f.write(json.dumps(item, ensure_ascii=False) + "\n")
|
||||||
|
else:
|
||||||
|
json.dump(data, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
|
||||||
|
def merge_datasets(
|
||||||
|
file1: str, file2: str, shuffle: bool = False, omit_instruction: bool = False
|
||||||
|
) -> Sequence[AlpacaEntry]:
|
||||||
|
"""Merge two files in JSON/JSONL format."""
|
||||||
|
# Load both files
|
||||||
|
data1 = load_file(file1)
|
||||||
|
data2 = load_file(file2)
|
||||||
|
merged_data = list(data1) + list(data2)
|
||||||
|
|
||||||
|
if omit_instruction:
|
||||||
|
for item in merged_data:
|
||||||
|
_ = item.pop("instruction", None)
|
||||||
|
|
||||||
|
if shuffle:
|
||||||
|
random.shuffle(merged_data)
|
||||||
|
|
||||||
|
return merged_data
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> Args:
|
||||||
|
"""Parse and validate command line arguments."""
|
||||||
|
parser = argparse.ArgumentParser(description="Merge two Alpaca-format JSON files")
|
||||||
|
_ = parser.add_argument("file1", type=str, help="Path to first JSON file")
|
||||||
|
_ = parser.add_argument("file2", type=str, help="Path to second JSON file")
|
||||||
|
_ = parser.add_argument("output", type=str, help="Path to output merged JSON file")
|
||||||
|
_ = parser.add_argument(
|
||||||
|
"--shuffle", action="store_true", help="Shuffle the merged dataset"
|
||||||
|
)
|
||||||
|
_ = parser.add_argument("--seed", type=int, help="Random seed for shuffling")
|
||||||
|
_ = parser.add_argument(
|
||||||
|
"--omit-instruction",
|
||||||
|
action="store_true",
|
||||||
|
help="Omit instruction field from output",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args(namespace=Args())
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
try:
|
||||||
|
if args.seed is not None:
|
||||||
|
random.seed(args.seed)
|
||||||
|
|
||||||
|
merged_data = merge_datasets(
|
||||||
|
args.file1, args.file2, args.shuffle, args.omit_instruction
|
||||||
|
)
|
||||||
|
|
||||||
|
write_output(merged_data, args.output)
|
||||||
|
print(f"Successfully merged files. Total entries: {len(merged_data)}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error: {str(e)}")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
120
train_torchtune.yaml
Normal file
120
train_torchtune.yaml
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
# Config for single device LoRA finetuning in lora_finetune_single_device.py
|
||||||
|
# using a Qwen2.5 7B model
|
||||||
|
#
|
||||||
|
# This config assumes that you've run the following command before launching
|
||||||
|
# this run:
|
||||||
|
# tune download Qwen/Qwen2.5-7B-Instruct --output-dir /tmp/Qwen2.5-7B-Instruct
|
||||||
|
#
|
||||||
|
# To launch on a single device, run the following command from root:
|
||||||
|
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device
|
||||||
|
#
|
||||||
|
# You can add specific overrides through the command line. For example
|
||||||
|
# to override the checkpointer directory while launching training
|
||||||
|
# you can run:
|
||||||
|
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
|
||||||
|
#
|
||||||
|
# This config works only for training on single device.
|
||||||
|
|
||||||
|
output_dir: /home/mira/models/qwen2_5_7B_tune/lora_single_device # /tmp may be deleted by your system. Change it to your preference.
|
||||||
|
|
||||||
|
# Model Arguments
|
||||||
|
model:
|
||||||
|
_component_: torchtune.models.qwen2_5.lora_qwen2_5_7b_base
|
||||||
|
lora_attn_modules: ["q_proj", "k_proj", "v_proj", "output_proj"]
|
||||||
|
apply_lora_to_mlp: True
|
||||||
|
apply_lora_to_output: True
|
||||||
|
lora_rank: 32 # higher increases accuracy and memory
|
||||||
|
lora_alpha: 64 # usually alpha=2*rank
|
||||||
|
lora_dropout: 0.05
|
||||||
|
quantize_base: True
|
||||||
|
|
||||||
|
tokenizer:
|
||||||
|
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
|
||||||
|
path: /home/mira/models/Qwen2.5-7B-Base/vocab.json
|
||||||
|
merges_file: /home/mira/models/Qwen2.5-7B-Base/merges.txt
|
||||||
|
max_seq_len: 16384
|
||||||
|
|
||||||
|
checkpointer:
|
||||||
|
_component_: torchtune.training.FullModelHFCheckpointer
|
||||||
|
checkpoint_dir: /home/mira/models/Qwen2.5-7B-Base
|
||||||
|
checkpoint_files:
|
||||||
|
[
|
||||||
|
model-00001-of-00004.safetensors,
|
||||||
|
model-00002-of-00004.safetensors,
|
||||||
|
model-00003-of-00004.safetensors,
|
||||||
|
model-00004-of-00004.safetensors,
|
||||||
|
]
|
||||||
|
recipe_checkpoint: null
|
||||||
|
output_dir: ${output_dir}
|
||||||
|
model_type: QWEN2
|
||||||
|
save_every_n_steps: 100
|
||||||
|
resume_from_checkpoint: False
|
||||||
|
|
||||||
|
# Dataset and Sampler
|
||||||
|
dataset:
|
||||||
|
_component_: torchtune.datasets.alpaca_cleaned_dataset
|
||||||
|
packed: True # True increases speed
|
||||||
|
seed: 42
|
||||||
|
shuffle: False
|
||||||
|
batch_size: 1
|
||||||
|
|
||||||
|
# Optimizer and Scheduler
|
||||||
|
optimizer:
|
||||||
|
_component_: torch.optim.AdamW
|
||||||
|
fused: True
|
||||||
|
weight_decay: 0.01
|
||||||
|
lr: 1e-4
|
||||||
|
lr_scheduler:
|
||||||
|
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
|
||||||
|
num_warmup_steps: 100
|
||||||
|
|
||||||
|
loss:
|
||||||
|
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
|
||||||
|
|
||||||
|
# Training
|
||||||
|
epochs: 1
|
||||||
|
max_steps_per_epoch: null
|
||||||
|
gradient_accumulation_steps: 32 # Use to increase effective batch size
|
||||||
|
clip_grad_norm: null
|
||||||
|
compile: True # torch.compile the model + loss, True increases speed + decreases memory
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
metric_logger:
|
||||||
|
_component_: torchtune.training.metric_logging.DiskLogger
|
||||||
|
log_dir: ${output_dir}/logs
|
||||||
|
log_every_n_steps: 5
|
||||||
|
log_peak_memory_stats: True
|
||||||
|
|
||||||
|
# Environment
|
||||||
|
device: cuda
|
||||||
|
dtype: fp16
|
||||||
|
|
||||||
|
# Activations Offloading
|
||||||
|
enable_activation_checkpointing: True # True reduces memory
|
||||||
|
enable_activation_offloading: True # True reduces memory
|
||||||
|
|
||||||
|
# Show case the usage of pytorch profiler
|
||||||
|
# Set enabled to False as it's only needed for debugging training
|
||||||
|
profiler:
|
||||||
|
_component_: torchtune.training.setup_torch_profiler
|
||||||
|
enabled: False
|
||||||
|
|
||||||
|
#Output directory of trace artifacts
|
||||||
|
output_dir: ${output_dir}/profiling_outputs
|
||||||
|
|
||||||
|
#`torch.profiler.ProfilerActivity` types to trace
|
||||||
|
cpu: True
|
||||||
|
cuda: True
|
||||||
|
|
||||||
|
#trace options passed to `torch.profiler.profile`
|
||||||
|
profile_memory: False
|
||||||
|
with_stack: False
|
||||||
|
record_shapes: True
|
||||||
|
with_flops: False
|
||||||
|
|
||||||
|
# `torch.profiler.schedule` options:
|
||||||
|
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
|
||||||
|
wait_steps: 5
|
||||||
|
warmup_steps: 5
|
||||||
|
active_steps: 2
|
||||||
|
num_cycles: 1
|
||||||
Reference in New Issue
Block a user