Files
zh-en-wn-dataset/train_torchtune.yaml
2025-02-13 17:25:01 +06:00

124 lines
3.6 KiB
YAML

# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Qwen2.5 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-7B-Instruct --output-dir /tmp/Qwen2.5-7B-Instruct
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
output_dir: /home/mira/models/qwen2_5_7B_tune/lora_single_device # /tmp may be deleted by your system. Change it to your preference.
# Model Arguments
model:
_component_: torchtune.models.qwen2_5.lora_qwen2_5_7b_base
lora_attn_modules: ["q_proj", "k_proj", "v_proj", "output_proj"]
apply_lora_to_mlp: True
apply_lora_to_output: True
lora_rank: 32 # higher increases accuracy and memory
lora_alpha: 64 # usually alpha=2*rank
lora_dropout: 0.05
quantize_base: True
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /home/mira/models/Qwen2.5-7B-Base/vocab.json
merges_file: /home/mira/models/Qwen2.5-7B-Base/merges.txt
max_seq_len: 16384
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /home/mira/models/Qwen2.5-7B-Base
checkpoint_files:
[
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: QWEN2
save_every_n_steps: 100
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.instruct_dataset
source: json
data_files: data/my_data.json
split: train
packed: True # True increases speed
seed: 42
shuffle: False
batch_size: 1
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 1e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 32 # Use to increase effective batch size
clip_grad_norm: null
compile: True # torch.compile the model + loss, True increases speed + decreases memory
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 5
log_peak_memory_stats: True
# Environment
device: cuda
dtype: fp16
# Activations Offloading
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: True # True reduces memory
# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1