Files
zh-en-wn-dataset/mlx_dataset_gen.py
2025-02-11 03:25:03 +06:00

96 lines
2.7 KiB
Python

import sqlite3
import json
from typing import List, Tuple
import unicodedata
def get_chapters(cursor) -> List[Tuple[str, str]]:
"""text length < 36000"""
query = """
select text_en, text_zh
from chapters
where length(text_en) < 36000
"""
return cursor.execute(query).fetchall()
def should_join_lines(line: str) -> bool:
"""Check if line should be joined with next line based on ending"""
line = line.rstrip()
return line.endswith(",") or (
line.count('"') % 2 == 1
) # odd number of quotes means open quote
def process_text(text: str) -> str:
"""Process text by handling special markings and line breaks"""
text = unicodedata.normalize("NFKC", text)
lines = text.strip().split("\n")
processed_lines = []
current_group = []
in_marked_section = False
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith("#<#"):
# Start of marked section - remove marker and store first line
in_marked_section = True
first_line = line[3:].strip() # Remove #<# and whitespace
current_group.append(first_line)
continue
if line.endswith("#>#"):
# End of marked section - remove marker and store last line
last_line = line[:-3].strip() # Remove #># and whitespace
current_group.append(last_line)
# Join all collected lines with space and add to processed lines
processed_lines.append(" ".join(current_group))
current_group = []
in_marked_section = False
continue
if in_marked_section:
current_group.append(line)
else:
processed_lines.append(line)
# Handle any remaining grouped lines (in case of malformed input)
if current_group:
processed_lines.append(" ".join(current_group))
# Join with double newlines
return "\n\n".join(processed_lines)
def create_dataset(db_path: str, output_path: str):
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
try:
chapters = get_chapters(cursor)
with open(output_path, "w", encoding="utf-8") as f:
for text_en, text_zh in chapters:
processed_en = process_text(text_en)
processed_zh = process_text(text_zh)
entry = {
"text": f"<|im_start|>user\n{processed_zh}<|im_end|>\n<|im_start|>assistant\n{processed_en}<|im_end|>"
}
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
finally:
conn.close()
if __name__ == "__main__":
DB_PATH = "parallel_texts.db"
OUTPUT_PATH = "datasets/dataset_v1.jsonl"
create_dataset(DB_PATH, OUTPUT_PATH)