451 lines
15 KiB
Python
451 lines
15 KiB
Python
# 2021/11/27
|
||
# bfsujason@163.com
|
||
|
||
"""
|
||
Usage:
|
||
|
||
python bin/bert_align.py \
|
||
-s data/mac/dev/zh \
|
||
-t data/mac/dev/en \
|
||
-o data/mac/dev/auto \
|
||
-m data/mac/dev/meta_data.tsv \
|
||
--src_embed data/mac/dev/zh/overlap data/mac/dev/zh/overlap.emb \
|
||
--tgt_embed data/mac/dev/en/overlap data/mac/dev/en/overlap.emb \
|
||
--max_align 8 --margin
|
||
"""
|
||
|
||
import os
|
||
import sys
|
||
import time
|
||
import torch
|
||
import faiss
|
||
import shutil
|
||
import argparse
|
||
import numpy as np
|
||
import numba as nb
|
||
|
||
def main():
|
||
# user-defined parameters
|
||
parser = argparse.ArgumentParser('Sentence alignment using Bertalign')
|
||
parser.add_argument('-s', '--src', type=str, required=True, help='preprocessed source file to align')
|
||
parser.add_argument('-t', '--tgt', type=str, required=True, help='preprocessed target file to align')
|
||
parser.add_argument('-o', '--out', type=str, required=True, help='Output directory.')
|
||
parser.add_argument('-m', '--meta', type=str, required=True, help='Metadata file.')
|
||
parser.add_argument('--src_embed', type=str, nargs=2, required=True,
|
||
help='Source embeddings. Requires two arguments: first is a text file, sencond is a binary embeddings file. ')
|
||
parser.add_argument('--tgt_embed', type=str, nargs=2, required=True,
|
||
help='Target embeddings. Requires two arguments: first is a text file, sencond is a binary embeddings file. ')
|
||
parser.add_argument('--max_align', type=int, default=5, help='Maximum alignment types, n + m <= this value.')
|
||
parser.add_argument('--win', type=int, default=5, help='Window size for the second-pass alignment.')
|
||
parser.add_argument('--top_k', type=int, default=3, help='Top-k target neighbors of each source sentence.')
|
||
parser.add_argument('--skip', type=float, default=-0.1, help='Similarity score for 0-1 and 1-0 alignment.')
|
||
parser.add_argument('--margin', action='store_true', help='Margin-based cosine similarity')
|
||
args = parser.parse_args()
|
||
|
||
# fixed parameters to determine the
|
||
# window size for the first-pass alignment
|
||
min_win_size = 10
|
||
max_win_size = 600
|
||
win_per_100 = 8
|
||
|
||
# read in embeddings
|
||
src_sent2line, src_line_embeddings = read_in_embeddings(args.src_embed[0], args.src_embed[1])
|
||
tgt_sent2line, tgt_line_embeddings = read_in_embeddings(args.tgt_embed[0], args.tgt_embed[1])
|
||
embedding_size = src_line_embeddings.shape[1]
|
||
|
||
make_dir(args.out)
|
||
jobs = create_jobs(args.meta, args.src, args.tgt, args.out)
|
||
|
||
# start alignment
|
||
for rec in jobs:
|
||
src_file, tgt_file, align_file = rec.split("\t")
|
||
print("Aligning {} to {}".format(src_file, tgt_file))
|
||
|
||
# read in source and target sentences
|
||
src_lines = open(src_file, 'rt', encoding="utf-8").readlines()
|
||
tgt_lines = open(tgt_file, 'rt', encoding="utf-8").readlines()
|
||
|
||
# convert source and target texts into embeddings
|
||
# and calculate sentence length
|
||
t_0 = time.time()
|
||
src_vecs, src_lens = doc2feats(src_sent2line, src_line_embeddings, src_lines, args.max_align - 1)
|
||
tgt_vecs, tgt_lens = doc2feats(tgt_sent2line, tgt_line_embeddings, tgt_lines, args.max_align - 1)
|
||
char_ratio = np.sum(src_lens[0,]) / np.sum(tgt_lens[0,])
|
||
print("Reading embeddings takes {:.3f}".format(time.time() - t_0))
|
||
|
||
# using faiss, find in the target text
|
||
# the k nearest neighbors of each source sentence
|
||
t_1 = time.time()
|
||
if torch.cuda.is_available(): # GPU version
|
||
res = faiss.StandardGpuResources()
|
||
index = faiss.IndexFlatIP(embedding_size)
|
||
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
|
||
gpu_index.add(tgt_vecs[0,:])
|
||
xq = src_vecs[0,:]
|
||
D,I = gpu_index.search(xq,args.top_k)
|
||
else: # CPU version
|
||
index = faiss.IndexFlatIP(embedding_size) # use inter product to build index
|
||
index.add(tgt_vecs[0,:])
|
||
xq = src_vecs[0,:]
|
||
D,I = index.search(xq, args.top_k)
|
||
print("Finding top-k neighbors takes {:.3f}".format(time.time() - t_1))
|
||
|
||
# find 1-to-1 alignment
|
||
t_2 = time.time()
|
||
src_len = len(src_lines)
|
||
tgt_len = len(tgt_lines)
|
||
first_alignment_types = make_alignment_types(2) # 0-0, 1-0 and 1-1
|
||
first_w, first_search_path = find_first_search_path(src_len, tgt_len, min_win_size, max_win_size, win_per_100)
|
||
first_pointers = first_pass_align(src_len, tgt_len, first_w, first_search_path, first_alignment_types, D, I, args.top_k)
|
||
first_alignment = first_back_track(src_len, tgt_len, first_pointers, first_search_path, first_alignment_types)
|
||
print("First pass alignment takes {:.3f}".format(time.time() - t_2))
|
||
|
||
# find m-to-n alignment
|
||
t_3 = time.time()
|
||
second_w, second_search_path = find_second_search_path(first_alignment, args.win, src_len, tgt_len)
|
||
second_alignment_types = make_alignment_types(args.max_align)
|
||
second_pointers = second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, second_w, second_search_path, second_alignment_types, char_ratio, args.skip, margin=args.margin)
|
||
second_alignment = second_back_track(src_len, tgt_len, second_pointers, second_search_path, second_alignment_types)
|
||
print("Second pass alignment takes {:.3f}".format(time.time() - t_3))
|
||
|
||
# save alignment
|
||
print_alignments(second_alignment, align_file)
|
||
|
||
def second_back_track(i, j, b, search_path, a_types):
|
||
alignment = []
|
||
while ( i !=0 and j != 0 ):
|
||
j_offset = j - search_path[i][0]
|
||
a = b[i][j_offset]
|
||
s = a_types[a][0]
|
||
t = a_types[a][1]
|
||
src_range = [i - offset - 1 for offset in range(s)][::-1]
|
||
tgt_range = [j - offset - 1 for offset in range(t)][::-1]
|
||
alignment.append((src_range, tgt_range))
|
||
|
||
i = i-s
|
||
j = j-t
|
||
|
||
return alignment[::-1]
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def second_pass_align(src_vecs, tgt_vecs, src_lens, tgt_lens, w, search_path, align_types, char_ratio, skip, margin=False):
|
||
src_len = src_vecs.shape[1]
|
||
tgt_len = tgt_vecs.shape[1]
|
||
|
||
# intialize sum matrix
|
||
cost = np.zeros((src_len + 1, w))
|
||
#back = np.zeros((tgt_len + 1, w), dtype=nb.int64)
|
||
back = np.zeros((src_len + 1, w), dtype=nb.int64)
|
||
cost[0][0] = 0
|
||
back[0][0] = -1
|
||
|
||
for i in range(1, src_len + 1):
|
||
i_start = search_path[i][0]
|
||
i_end = search_path[i][1]
|
||
for j in range(i_start, i_end + 1):
|
||
if i + j == 0:
|
||
continue
|
||
best_score = -np.inf
|
||
best_a = -1
|
||
for a in range(align_types.shape[0]):
|
||
a_1 = align_types[a][0]
|
||
a_2 = align_types[a][1]
|
||
prev_i = i - a_1
|
||
prev_j = j - a_2
|
||
|
||
if prev_i < 0 or prev_j < 0 : # no previous cell in DP table
|
||
continue
|
||
prev_i_start = search_path[prev_i][0]
|
||
prev_i_end = search_path[prev_i][1]
|
||
if prev_j < prev_i_start or prev_j > prev_i_end: # out of bound of cost matrix
|
||
continue
|
||
prev_j_offset = prev_j - prev_i_start
|
||
score = cost[prev_i][prev_j_offset]
|
||
if score == -np.inf:
|
||
continue
|
||
|
||
if a_1 == 0 or a_2 == 0: # deletion or insertion
|
||
cur_score = skip
|
||
else:
|
||
src_v = src_vecs[a_1-1,i-1,:]
|
||
tgt_v = tgt_vecs[a_2-1,j-1,:]
|
||
src_l = src_lens[a_1-1, i-1]
|
||
tgt_l = tgt_lens[a_2-1, j-1]
|
||
cur_score = get_score(src_v, tgt_v, a_1, a_2, i, j, src_vecs, tgt_vecs, src_len, tgt_len, margin=margin)
|
||
tgt_l = tgt_l * char_ratio
|
||
min_len = min(src_l, tgt_l)
|
||
max_len = max(src_l, tgt_l)
|
||
len_p = np.log2(1 + min_len / max_len)
|
||
cur_score *= len_p
|
||
|
||
score += cur_score
|
||
if score > best_score:
|
||
best_score = score
|
||
best_a = a
|
||
|
||
j_offset = j - i_start
|
||
cost[i][j_offset] = best_score
|
||
back[i][j_offset] = best_a
|
||
|
||
return back
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def get_score(src_v, tgt_v, a_1, a_2, i, j, src_vecs, tgt_vecs, src_len, tgt_len, margin=False):
|
||
similarity = nb_dot(src_v, tgt_v)
|
||
if margin:
|
||
tgt_neighbor_ave_sim = get_neighbor_sim(src_v, a_2, j, tgt_len, tgt_vecs)
|
||
src_neighbor_ave_sim = get_neighbor_sim(tgt_v, a_1, i, src_len, src_vecs)
|
||
neighbor_ave_sim = (tgt_neighbor_ave_sim + src_neighbor_ave_sim)/2
|
||
similarity -= neighbor_ave_sim
|
||
|
||
return similarity
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def get_neighbor_sim(vec, a, j, len, db):
|
||
left_idx = j - a
|
||
right_idx = j + 1
|
||
|
||
if right_idx > len:
|
||
neighbor_right_sim = 0
|
||
else:
|
||
right_embed = db[0,right_idx-1,:]
|
||
neighbor_right_sim = nb_dot(vec, right_embed)
|
||
|
||
if left_idx == 0:
|
||
neighbor_left_sim = 0
|
||
else:
|
||
left_embed = db[0,left_idx-1,:]
|
||
neighbor_left_sim = nb_dot(vec, left_embed)
|
||
|
||
#if right_idx > LEN or left_idx < 0:
|
||
if right_idx > len or left_idx == 0:
|
||
neighbor_ave_sim = neighbor_left_sim + neighbor_right_sim
|
||
else:
|
||
neighbor_ave_sim = (neighbor_left_sim + neighbor_right_sim) / 2
|
||
|
||
return neighbor_ave_sim
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def nb_dot(x, y):
|
||
return np.dot(x,y)
|
||
|
||
def find_second_search_path(align, w, src_len, tgt_len):
|
||
'''
|
||
Convert 1-1 alignment from first-pass to the path for second-pass alignment.
|
||
The index along X-axis and Y-axis must be consecutive.
|
||
'''
|
||
last_bead_src = align[-1][0]
|
||
last_bead_tgt = align[-1][1]
|
||
|
||
if last_bead_src != src_len:
|
||
if last_bead_tgt == tgt_len:
|
||
align.pop()
|
||
align.append((src_len, tgt_len))
|
||
else:
|
||
if last_bead_tgt != tgt_len:
|
||
align.pop()
|
||
align.append((src_len, tgt_len))
|
||
|
||
prev_src, prev_tgt = 0,0
|
||
path = []
|
||
max_w = -np.inf
|
||
for src, tgt in align:
|
||
lower_bound = max(0, prev_tgt - w)
|
||
upper_bound = min(tgt_len, tgt + w)
|
||
path.extend([(lower_bound, upper_bound) for id in range(prev_src+1, src+1)])
|
||
prev_src, prev_tgt = src, tgt
|
||
width = upper_bound - lower_bound
|
||
if width > max_w:
|
||
max_w = width
|
||
path = [path[0]] + path
|
||
|
||
return max_w + 1, np.array(path)
|
||
|
||
def first_back_track(i, j, b, search_path, a_types):
|
||
alignment = []
|
||
while ( i !=0 and j != 0 ):
|
||
j_offset = j - search_path[i][0]
|
||
a = b[i][j_offset]
|
||
s = a_types[a][0]
|
||
t = a_types[a][1]
|
||
if a == 2:
|
||
alignment.append((i, j))
|
||
|
||
i = i-s
|
||
j = j-t
|
||
|
||
return alignment[::-1]
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def first_pass_align(src_len, tgt_len, w, search_path, align_types, dist, index, top_k):
|
||
|
||
#initialize cost and backpointer matrix
|
||
cost = np.zeros((src_len + 1, 2 * w + 1))
|
||
pointers = np.zeros((src_len + 1, 2 * w + 1), dtype=nb.int64)
|
||
cost[0][0] = 0
|
||
pointers[0][0] = -1
|
||
|
||
for i in range(1, src_len + 1):
|
||
i_start = search_path[i][0]
|
||
i_end = search_path[i][1]
|
||
for j in range(i_start, i_end + 1):
|
||
if i + j == 0:
|
||
continue
|
||
best_score = -np.inf
|
||
best_a = -1
|
||
for a in range(align_types.shape[0]):
|
||
a_1 = align_types[a][0]
|
||
a_2 = align_types[a][1]
|
||
prev_i = i - a_1
|
||
prev_j = j - a_2
|
||
if prev_i < 0 or prev_j < 0 : # no previous cell
|
||
continue
|
||
prev_i_start = search_path[prev_i][0]
|
||
prev_i_end = search_path[prev_i][1]
|
||
if prev_j < prev_i_start or prev_j > prev_i_end: # out of bound of cost matrix
|
||
continue
|
||
prev_j_offset = prev_j - prev_i_start
|
||
score = cost[prev_i][prev_j_offset]
|
||
if score == -np.inf:
|
||
continue
|
||
|
||
if a_1 > 0 and a_2 > 0:
|
||
for k in range(top_k):
|
||
if index[i-1][k] == j - 1:
|
||
score += dist[i-1][k]
|
||
if score > best_score:
|
||
best_score = score
|
||
best_a = a
|
||
|
||
j_offset = j - i_start
|
||
cost[i][j_offset] = best_score
|
||
pointers[i][j_offset] = best_a
|
||
|
||
return pointers
|
||
|
||
@nb.jit(nopython=True, fastmath=True, cache=True)
|
||
def find_first_search_path(src_len, tgt_len, min_win_size, max_win_size, win_per_100):
|
||
yx_ratio = tgt_len / src_len
|
||
win_size_1 = int(yx_ratio * tgt_len * win_per_100 / 100)
|
||
win_size_2 = int(abs(tgt_len - src_len) * 3/4)
|
||
w_1 = min(max(min_win_size, max(win_size_1, win_size_2)), max_win_size)
|
||
w_2 = int(max(src_len, tgt_len) * 0.06)
|
||
w = max(w_1, w_2)
|
||
search_path = np.zeros((src_len + 1, 2), dtype=nb.int64)
|
||
for i in range(0, src_len + 1):
|
||
center = int(yx_ratio * i)
|
||
w_start = max(0, center - w)
|
||
w_end = min(center + w, tgt_len)
|
||
search_path[i] = [w_start, w_end]
|
||
|
||
return w, search_path
|
||
|
||
def doc2feats(sent2line, line_embeddings, lines, num_overlaps):
|
||
lines = [preprocess_line(line) for line in lines]
|
||
vecsize = line_embeddings.shape[1]
|
||
vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32)
|
||
vecs1 = np.empty((num_overlaps, len(lines)), dtype=np.int)
|
||
|
||
for ii, overlap in enumerate(range(1, num_overlaps + 1)):
|
||
for jj, out_line in enumerate(layer(lines, overlap)):
|
||
try:
|
||
line_id = sent2line[out_line]
|
||
except KeyError:
|
||
logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line)
|
||
line_id = None
|
||
|
||
if line_id is not None:
|
||
vec = line_embeddings[line_id]
|
||
else:
|
||
vec = np.random.random(vecsize) - 0.5
|
||
vec = vec / np.linalg.norm(vec)
|
||
|
||
vecs0[ii, jj, :] = vec
|
||
vecs1[ii, jj] = len(out_line.encode("utf-8"))
|
||
|
||
return vecs0, vecs1
|
||
|
||
def preprocess_line(line):
|
||
line = line.strip()
|
||
if len(line) == 0:
|
||
line = 'BLANK_LINE'
|
||
|
||
return line
|
||
|
||
def layer(lines, num_overlaps, comb=' '):
|
||
"""
|
||
make front-padded overlapping sentences
|
||
"""
|
||
if num_overlaps < 1:
|
||
raise Exception('num_overlaps must be >= 1')
|
||
out = ['PAD', ] * min(num_overlaps - 1, len(lines))
|
||
for ii in range(len(lines) - num_overlaps + 1):
|
||
out.append(comb.join(lines[ii:ii + num_overlaps]))
|
||
|
||
return out
|
||
|
||
def read_in_embeddings(text_file, embed_file):
|
||
sent2line = dict()
|
||
with open(text_file, 'rt', encoding="utf-8") as fin:
|
||
for ii, line in enumerate(fin):
|
||
if line.strip() in sent2line:
|
||
raise Exception('got multiple embeddings for the same line')
|
||
sent2line[line.strip()] = ii
|
||
|
||
line_embeddings = np.fromfile(embed_file, dtype=np.float32, count=-1)
|
||
if line_embeddings.size == 0:
|
||
raise Exception('Got empty embedding file')
|
||
|
||
embedding_size = line_embeddings.size // len(sent2line)
|
||
line_embeddings.resize(line_embeddings.shape[0] // embedding_size, embedding_size)
|
||
|
||
return sent2line, line_embeddings
|
||
|
||
def make_alignment_types(max_alignment_size):
|
||
# Return list of all (n,m) where n+m <= this
|
||
alignment_types = []
|
||
for x in range(1, max_alignment_size):
|
||
for y in range(1, max_alignment_size):
|
||
if x + y <= max_alignment_size:
|
||
alignment_types.append([x, y])
|
||
alignment_types = [[0,1], [1,0]] + alignment_types
|
||
|
||
return np.array(alignment_types)
|
||
|
||
def create_jobs(meta, src, tgt, out):
|
||
jobs = []
|
||
fns = get_fns(meta)
|
||
for file in fns:
|
||
src_path = os.path.abspath(os.path.join(src, file))
|
||
tgt_path = os.path.abspath(os.path.join(tgt, file))
|
||
|
||
out_path = os.path.abspath(os.path.join(out, file + '.align'))
|
||
jobs.append('\t'.join([src_path, tgt_path, out_path]))
|
||
|
||
return jobs
|
||
|
||
def get_fns(meta):
|
||
fns = []
|
||
with open(meta, 'rt', encoding='utf-8') as f:
|
||
next(f) # skip header
|
||
for line in f:
|
||
recs = line.strip().split('\t')
|
||
fns.append(recs[0])
|
||
|
||
return fns
|
||
|
||
def print_alignments(alignments, out):
|
||
with open(out, 'wt', encoding='utf-8') as f:
|
||
for x, y in alignments:
|
||
f.write("{}:{}\n".format(x, y))
|
||
|
||
def make_dir(path):
|
||
if os.path.isdir(path):
|
||
shutil.rmtree(path)
|
||
os.makedirs(path, exist_ok=True)
|
||
|
||
if __name__ == '__main__':
|
||
t_0 = time.time()
|
||
main()
|
||
print("It takes {:.3f} seconds to align all the sentences.".format(time.time() - t_0))
|