chore: mqtt impl, fix more wiznet bugs

This commit is contained in:
2024-11-10 02:47:54 +06:00
parent 80cf21f143
commit 3ac9c62241
19 changed files with 1093 additions and 253 deletions

View File

@@ -18,6 +18,13 @@
"systick.h": "c",
"timer.h": "c",
"stdint.h": "c",
"mqtt_interface.h": "c"
"mqtt_interface.h": "c",
"gpio.h": "c",
"modbus_handler.h": "c",
"rs485.h": "c",
"system_init.h": "c",
"mqtt_handler.h": "c",
"cstdlib": "c",
"modbus_master.h": "c"
}
}

View File

@@ -3,23 +3,74 @@
#include <stdint.h>
// Debug flags
#define DEBUG_MODE 1
#define DNS_RUN_INTERVAL_MS 100
// Device Bus Types
typedef enum { BUS_RS485, BUS_ONEWIRE } bus_type_t;
// #define LOCAL_PORT 5000
// Device Type Definitions
typedef enum {
DEVICE_RELAY = 1,
DEVICE_SOIL_SENSOR = 2,
DEVICE_THERMOMETER = 3
} device_type_t;
// MQTT configuration
#define CLIENT_ID "ch32_node"
// Node Configuration
typedef struct {
const char* id; // Unique identifier for the node
const char* name; // Human readable name
const char* location; // Optional location description
} node_config_t;
#define MQTT_TARGET_IP {192, 168, 102, 100}
#define MQTT_TARGET_PORT 1883
// RS485 Device Configuration
typedef struct {
uint8_t slave_id; // Modbus slave ID
device_type_t type; // Type of device
const char* name; // Device name (used in MQTT topics)
} rs485_device_t;
// OneWire naming scheme configuration
typedef struct {
const char* location; // Location prefix for the sensor
const char* name_prefix; // Prefix for auto-generated names
} onewire_naming_t;
// Network Configuration
#define MQTT_SERVER_IP {192, 168, 102, 100}
#define MQTT_PORT 1883
// MQTT Configuration
#define MQTT_KEEP_ALIVE_INTERVAL 60
#define MQTT_TX_BUFFER_SIZE 128
#define MQTT_RX_BUFFER_SIZE 128
#define MQTT_COMMAND_TIMEOUT_MS 1000
#define SUB_TOPIC "listen/world"
#define PUB_TOPIC "hello/world"
// Node Specific Configuration
static const node_config_t NODE_CONFIG = {
.id = "ch32-node1", .name = "CH32 Node 1", .location = "somewhere"};
// RS485 Devices Configuration
#define RS485_DEVICE_COUNT 2
static const rs485_device_t RS485_DEVICES[RS485_DEVICE_COUNT] = {
{.slave_id = 0x01, .type = DEVICE_RELAY, .name = "relay-1"},
{.slave_id = 0x02, .type = DEVICE_SOIL_SENSOR, .name = "soil-monitor-1"}};
// OneWire Naming Configuration
#define MAX_ONEWIRE_DEVICES 8
static const onewire_naming_t ONEWIRE_NAMING[] = {
{.location = "tank", .name_prefix = "water-temp"},
{.location = "ambient", .name_prefix = "air-temp"},
{.location = "soil", .name_prefix = "soil-temp"}};
// Structure to store discovered OneWire devices
typedef struct {
uint8_t address[8]; // OneWire address
uint8_t location_index; // Index into ONEWIRE_NAMING array
char name[32]; // Generated name (e.g., "tank-water-temp-1")
uint8_t sequence; // Sequence number within its location
} onewire_device_t;
#endif // CONFIG_H

17
include/modbus_handler.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef MODBUS_HANDLER_H
#define MODBUS_HANDLER_H
#include <stdint.h>
#include "config.h"
#include "modbus_master.h"
typedef void (*modbus_value_cb)(uint8_t device_idx, const char* property,
uint16_t value);
void modbus_handler_init(modbus_context_t* ctx, modbus_value_cb value_callback);
void modbus_handler_process(void);
uint8_t modbus_handler_send_request(uint8_t device_idx, const char* property,
uint8_t is_write, uint16_t value);
#endif

56
include/modbus_master.h Normal file
View File

@@ -0,0 +1,56 @@
#ifndef __MODBUS_MASTER_H
#define __MODBUS_MASTER_H
#include <stdint.h>
// Function codes
#define MODBUS_FC_READ_HOLDING_REGISTERS 0x03
#define MODBUS_FC_WRITE_SINGLE_REGISTER 0x06
#define MODBUS_FC_WRITE_MULTIPLE_REGISTERS 0x10
// Error codes
#define MODBUS_ERROR_NONE 0x00
#define MODBUS_ERROR_FUNCTION 0x01
#define MODBUS_ERROR_ADDRESS 0x02
#define MODBUS_ERROR_VALUE 0x03
#define MODBUS_ERROR_TIMEOUT 0x04
// Frame length
#define MB_MIN_LEN 4
#define MB_CRC_LEN 2
#define MB_WREG_LEN 8
#define MB_MAX_BUFFER 32
// State machine states
typedef enum {
MODBUS_IDLE,
MODBUS_WAITING_RESPONSE,
MODBUS_PROCESS_RESPONSE
} modbus_state_t;
// Modbus context structure
typedef struct {
modbus_state_t state;
uint32_t last_send_time;
uint32_t response_timeout;
uint8_t buffer[MB_MAX_BUFFER];
uint16_t rx_len;
uint16_t current_bit;
uint16_t last_value;
void (*on_response)(uint8_t* buf, uint16_t len,
uint16_t value); // Response callback
void (*on_error)(uint8_t error_code); // Error callback
} modbus_context_t;
uint16_t modbus_create_request(uint8_t* req, uint8_t slave_addr,
uint8_t function, uint16_t address,
uint16_t value);
uint8_t modbus_process_response(uint8_t* buf, uint16_t len, uint16_t* value);
void modbus_init(modbus_context_t* ctx,
void (*response_callback)(uint8_t*, uint16_t, uint16_t),
void (*error_callback)(uint8_t));
void modbus_set_timeout(modbus_context_t* ctx, uint32_t timeout_ms);
void modbus_process(modbus_context_t* ctx);
uint8_t modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr,
uint8_t function, uint16_t address, uint16_t value);
#endif // __MODBUS_MASTER_H

25
include/mqtt_handler.h Normal file
View File

@@ -0,0 +1,25 @@
#ifndef MQTT_HANDLER_H
#define MQTT_HANDLER_H
#include <DHCP/dhcp.h>
#include "ch32v003fun.h"
#include "w5500.h"
typedef struct {
Network network;
MQTTClient client;
ch32_mqtt_options_t opts;
uint32_t last_reconnect;
uint32_t last_yield;
uint8_t is_connected;
char base_topic[64];
} mqtt_state_t;
void mqtt_init(mqtt_state_t* state);
void mqtt_process(mqtt_state_t* state);
void message_arrived(MessageData* md);
void publish_value(MQTTClient* client, const char* device_name,
const char* property, uint16_t value);
#endif

11
include/rs485.h Normal file
View File

@@ -0,0 +1,11 @@
#ifndef RS485_H
#define RS485_H
#include <stdint.h>
void rs485_init(int uart_brr);
void rs485_send(uint8_t *buf, uint16_t len);
uint8_t rs485_available(void);
uint8_t rs485_read(void);
#endif // RS485_H

9
include/system_init.h Normal file
View File

@@ -0,0 +1,9 @@
#ifndef SYSTEM_INIT_H
#define SYSTEM_INIT_H
#define W5500_INIT_DELAY_MS 55
void init_system(void);
int wait_for_dhcp(void);
#endif

View File

@@ -3,13 +3,15 @@
#include <stdint.h>
#define UART1_BAUD_RATE 9600
// Macro definitions
#define APB1_CLOCK (FUNCONF_SYSTEM_CORE_CLOCK / 2) // APB1 is divided by 2
#define UART_BRR_APB1 \
(((APB1_CLOCK) + (UART_BAUD_RATE / 2)) / (UART_BAUD_RATE)) // USART2
#define UART_BRR_APB2 \
(((FUNCONF_SYSTEM_CORE_CLOCK) + (UART_BAUD_RATE / 2)) / \
(UART_BAUD_RATE)) // USART1
(((FUNCONF_SYSTEM_CORE_CLOCK) + (UART1_BAUD_RATE / 2)) / \
(UART1_BAUD_RATE)) // USART1
// Function prototypes
void init_uart(int uart_brr);

View File

@@ -19,8 +19,6 @@ typedef struct {
extern volatile int ip_assigned;
void handle_ip_assigned(void);
// Initializes the W5500 chip
void configure_network(void);
@@ -29,17 +27,6 @@ void dhcp_init(void);
void dhcp_process(void);
// resolves a domain name
void resolve_domain_name(const char* domain_name);
// init and connect the MQTT client
int setup_mqtt_client(Network* network, ch32_mqtt_options_t* opts,
MQTTClient* client);
int subscribe_to_topic(MQTTClient* client, const char* topic, enum QoS qos,
messageHandler message_callback);
// publish a message to a topic
void publish_message(MQTTClient* client, const char* payload,
const char* topic);
// void resolve_domain_name(const char* domain_name);
#endif // W5500_H

View File

@@ -57,7 +57,7 @@ extern "C" {
* @details If you want to display debug & processing message, Define _DHCP_DEBUG_
* @note If defined, it depends on <stdio.h>
*/
#define _DHCP_DEBUG_
// #define _DHCP_DEBUG_
/* Retry to processing DHCP */

View File

@@ -14,6 +14,7 @@
* Allan Stockdill-Mander/Ian Craggs - initial API and implementation and/or initial documentation
*******************************************************************************/
#include "MQTTClient.h"
#include <string.h>
static void NewMessageData(MessageData* md, MQTTString* aTopicName, MQTTMessage* aMessage) {
md->topicName = aTopicName;
@@ -56,7 +57,8 @@ void MQTTClientInit(MQTTClient* c, Network* network, unsigned int command_timeou
c->ipstack = network;
for (i = 0; i < MAX_MESSAGE_HANDLERS; ++i)
c->messageHandlers[i].topicFilter = 0;
c->messageHandlers[i].topicFilter[0] = '\0';
c->messageHandlers[i].fp = NULL;
c->command_timeout_ms = command_timeout_ms;
c->buf = sendbuf;
c->buf_size = sendbuf_size;
@@ -108,12 +110,12 @@ static int readPacket(MQTTClient* c, Timer* timer)
int len = 0;
int rem_len = 0;
/* 1. read the header byte. This has the packet type in it */
/* 1. read the header byte. This has the packet type in it */
if (c->ipstack->mqttread(c->ipstack, c->readbuf, 1, TimerLeftMS(timer)) != 1)
goto exit;
len = 1;
/* 2. read the remaining length. This is variable in itself */
/* 2. read the remaining length. This is variable in itself */
decodePacket(c, &rem_len, TimerLeftMS(timer));
len += MQTTPacket_encode(c->readbuf + 1, rem_len); /* put the original remaining length back into the buffer */
@@ -167,8 +169,8 @@ int deliverMessage(MQTTClient* c, MQTTString* topicName, MQTTMessage* message)
// we have to find the right message handler - indexed by topic
for (i = 0; i < MAX_MESSAGE_HANDLERS; ++i)
{
if (c->messageHandlers[i].topicFilter != 0 && (MQTTPacket_equals(topicName, (char*)c->messageHandlers[i].topicFilter) ||
isTopicMatched((char*)c->messageHandlers[i].topicFilter, topicName)))
if (c->messageHandlers[i].topicFilter[0] != '\0' && (MQTTPacket_equals(topicName, c->messageHandlers[i].topicFilter) ||
isTopicMatched(c->messageHandlers[i].topicFilter, topicName)))
{
if (c->messageHandlers[i].fp != NULL)
{
@@ -194,11 +196,14 @@ int deliverMessage(MQTTClient* c, MQTTString* topicName, MQTTMessage* message)
int keepalive(MQTTClient* c)
{
int rc = FAILURE;
int rc = SUCCESSS;
if (c->keepAliveInterval == 0)
goto exit;
if (!c->isconnected)
{
rc = SUCCESSS;
rc = FAILURE;
goto exit;
}
@@ -209,9 +214,24 @@ int keepalive(MQTTClient* c)
Timer timer;
TimerInit(&timer);
TimerCountdownMS(&timer, 1000);
int len = MQTTSerialize_pingreq(c->buf, c->buf_size);
if (len > 0 && (rc = sendPacket(c, len, &timer)) == SUCCESSS) // send the ping packet
if (len <= 0)
{
rc = FAILURE;
goto exit;
}
rc = sendPacket(c, len, &timer);
if (rc == SUCCESSS)
{
c->ping_outstanding = 1;
TimerCountdown(&c->ping_timer, c->keepAliveInterval);
}
}
else
{
rc = FAILURE;
}
}
@@ -436,9 +456,10 @@ int MQTTSubscribe(MQTTClient* c, const char* topicFilter, enum QoS qos, messageH
int i;
for (i = 0; i < MAX_MESSAGE_HANDLERS; ++i)
{
if (c->messageHandlers[i].topicFilter == 0)
if (c->messageHandlers[i].topicFilter[0] == '\0')
{
c->messageHandlers[i].topicFilter = topicFilter;
strncpy(c->messageHandlers[i].topicFilter, topicFilter, MAX_TOPIC_LENGTH - 1);
c->messageHandlers[i].topicFilter[MAX_TOPIC_LENGTH - 1] = '\0';
c->messageHandlers[i].fp = messageHandler;
rc = 0;
break;

View File

@@ -43,6 +43,8 @@
#define MAX_MESSAGE_HANDLERS 5 /* redefinable - how many subscriptions do you want? */
#endif
#define MAX_TOPIC_LENGTH 64
enum QoS { QOS0, QOS1, QOS2 };
/* all failure return codes must be negative */
@@ -97,7 +99,7 @@ typedef struct MQTTClient
struct MessageHandlers
{
const char* topicFilter;
char topicFilter[MAX_TOPIC_LENGTH];
void (*fp) (MessageData*);
} messageHandlers[MAX_MESSAGE_HANDLERS]; /* Message handlers are indexed by subscription topic */

View File

@@ -1,151 +1,45 @@
#include <DHCP/dhcp.h>
#include "ch32v003fun.h"
#include "config.h"
#include "debug.h"
#include "dhcp.h"
#include "gpio.h"
#include "socket.h"
#include "spi_dma.h"
#include "systick.h"
#include "timer.h"
#include "uart.h"
#include "modbus_handler.h"
#include "mqtt_handler.h"
#include "system_init.h"
#include "w5500.h"
#define MQTT_RECONNECT_INTERVAL 5000
#define MQTT_YIELD_INTERVAL 100
#define W5500_INIT_DELAY_MS 55
#define DHCP_TIMEOUT_MS 15000
static mqtt_state_t mqtt_state;
static modbus_context_t modbus_ctx;
typedef struct {
Network network;
MQTTClient client;
ch32_mqtt_options_t opts;
uint32_t last_reconnect;
uint32_t last_yield;
uint8_t is_connected;
} mqtt_state_t;
// init MQTT state
void mqtt_init(mqtt_state_t* state, char* client_id) {
// TODO
state->opts.clientid = client_id;
state->opts.username = "";
state->opts.password = "";
state->opts.qos = QOS0;
state->last_reconnect = 0;
state->last_yield = 0;
state->is_connected = 0;
}
// cb fn for when a message is received
void message_arrived(MessageData* md) {
if (!md || !md->message) {
DEBUG_PRINT("Error: MessageData is NULL.\n");
return;
// Callback for modbus values
static void on_modbus_value(uint8_t device_idx, const char* property,
uint16_t value) {
if (mqtt_state.is_connected) {
publish_value(&mqtt_state.client, RS485_DEVICES[device_idx].name, property,
value);
}
MQTTMessage* message = md->message;
DEBUG_PRINT("MQTT Message Arrived:\n");
DEBUG_PRINT("QoS: %d\n", message->qos);
DEBUG_PRINT("Retained: %d\n", message->retained);
DEBUG_PRINT("Duplicate: %d\n", message->dup);
DEBUG_PRINT("Message ID: %u\n", message->id);
DEBUG_PRINT("Payload Length: %u\n", (unsigned int)message->payloadlen);
if (message->payload != NULL && message->payloadlen > 0) {
DEBUG_PRINT("Payload: ");
for (unsigned int i = 0; i < (unsigned int)message->payloadlen; ++i) {
putchar(((unsigned char*)message->payload)[i]);
}
DEBUG_PRINT("\n");
} else {
DEBUG_PRINT("Payload: <No data>\n");
}
}
// mqtt reconnect
// TODO: setup will, publish discovery messages, setup subs
void mqtt_process(mqtt_state_t* state) {
uint32_t now = millis();
int rc;
if (!state->is_connected) {
if (now - state->last_reconnect >= MQTT_RECONNECT_INTERVAL) {
DEBUG_PRINT("Attempting MQTT connection...\n");
rc = setup_mqtt_client(&state->network, &state->opts, &state->client);
if (rc == 0) {
DEBUG_PRINT("MQTT connected\n");
state->is_connected = 1;
rc = subscribe_to_topic(&state->client, SUB_TOPIC, QOS0,
message_arrived);
if (rc != 0) {
DEBUG_PRINT("Subscribe failed: %d\n", rc);
state->is_connected = 0;
} else {
publish_message(&state->client, "Device connected", PUB_TOPIC);
}
}
state->last_reconnect = now;
}
} else if (now - state->last_yield >= MQTT_YIELD_INTERVAL) {
rc = MQTTYield(&state->client, 100);
if (rc != 0) {
DEBUG_PRINT("Yield failed: %d\n", rc);
state->is_connected = 0;
}
state->last_yield = now;
}
}
void init_system(void) {
SystemInit();
init_gpio();
init_systick();
tim2_init();
init_uart(UART_BRR_APB1);
init_spidma();
}
// Wait for DHCP lease
static int wait_for_dhcp(void) {
uint32_t start = millis();
while (dhcp_get_state() != DHCP_STATE_LEASED) {
if (millis() - start >= DHCP_TIMEOUT_MS) {
DEBUG_PRINT("DHCP timeout\n");
return 0;
}
dhcp_process();
}
return 1;
}
int main(void) {
init_system();
Delay_Ms(W5500_INIT_DELAY_MS);
// Configure network and DHCP
configure_network();
dhcp_init();
if (!wait_for_dhcp()) {
while (1) {
// todo: handle err
// TODO: Implement proper error handling
}
}
resolve_domain_name("example.com");
// mqtt
mqtt_state_t mqtt;
mqtt_init(&mqtt, CLIENT_ID);
// init handlers
mqtt_init(&mqtt_state);
modbus_handler_init(&modbus_ctx, on_modbus_value);
while (1) {
dhcp_process();
mqtt_process(&mqtt);
mqtt_process(&mqtt_state);
modbus_handler_process();
}
return 0;

79
src/modbus_handler.c Normal file
View File

@@ -0,0 +1,79 @@
#include "modbus_handler.h"
#include <string.h>
#include "debug.h"
#include "systick.h"
static struct {
modbus_context_t* ctx;
modbus_value_cb value_cb;
uint8_t last_device_idx;
char last_property[16];
} handler;
static void on_modbus_response(uint8_t* buf, uint16_t len, uint16_t value) {
if (handler.last_device_idx >= RS485_DEVICE_COUNT || !handler.value_cb) {
return;
}
// call the value callback with parsed data
handler.value_cb(handler.last_device_idx, handler.last_property, value);
// clear the context
handler.last_device_idx = 0xFF;
handler.last_property[0] = '\0';
}
static void on_modbus_error(uint8_t error_code) {
// clear the context on error
handler.last_device_idx = 0xFF;
handler.last_property[0] = '\0';
}
void modbus_handler_init(modbus_context_t* ctx,
modbus_value_cb value_callback) {
handler.ctx = ctx;
handler.value_cb = value_callback;
handler.last_device_idx = 0xFF;
handler.last_property[0] = '\0';
// Initialize modbus with our callbacks
modbus_init(ctx, on_modbus_response, on_modbus_error);
modbus_set_timeout(ctx, 200);
}
void modbus_handler_process(void) { modbus_process(handler.ctx); }
// Get Modbus register for specific device type and property
static uint16_t get_register_address(device_type_t type, const char* property) {
if (type == DEVICE_RELAY && strcmp(property, "state") == 0) {
return 0x0000;
}
return 0xFFFF;
}
uint8_t modbus_handler_send_request(uint8_t device_idx, const char* property,
uint8_t is_write, uint16_t value) {
if (device_idx >= RS485_DEVICE_COUNT) {
return 0;
}
uint16_t reg = get_register_address(RS485_DEVICES[device_idx].type, property);
if (reg == 0xFFFF) {
return 0;
}
uint8_t fc = is_write ? MODBUS_FC_WRITE_SINGLE_REGISTER
: MODBUS_FC_READ_HOLDING_REGISTERS;
if (modbus_send_request(handler.ctx, RS485_DEVICES[device_idx].slave_id, fc,
reg, value)) {
handler.last_device_idx = device_idx;
strncpy(handler.last_property, property, sizeof(handler.last_property) - 1);
handler.last_property[sizeof(handler.last_property) - 1] = '\0';
return 1;
}
return 0;
}

247
src/modbus_master.c Normal file
View File

@@ -0,0 +1,247 @@
#include "modbus_master.h"
#include "debug.h"
#include "rs485.h"
#include "systick.h"
static uint16_t modbus_crc16(const unsigned char* buf, unsigned int len) {
static const uint16_t table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601,
0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0,
0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81,
0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941,
0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01,
0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0,
0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081,
0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00,
0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0,
0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981,
0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41,
0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700,
0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0,
0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281,
0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,
0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,
0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,
0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,
0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101,
0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0,
0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481,
0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801,
0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1,
0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581,
0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341,
0x4100, 0x81C1, 0x8081, 0x4040};
uint8_t xor = 0;
uint16_t crc = 0xFFFF;
while (len--) {
xor = (*buf++) ^ crc;
crc >>= 8;
crc ^= table[xor];
}
return crc;
}
static inline uint16_t mb_word(uint8_t hi, uint8_t lo) {
return ((uint16_t)hi << 8) | lo;
}
static inline void mb_split(uint16_t val, uint8_t* hi, uint8_t* lo) {
*hi = (val >> 8) & 0xFF;
*lo = val & 0xFF;
}
uint16_t modbus_create_request(uint8_t* req, uint8_t slave_addr,
uint8_t function, uint16_t address,
uint16_t value) {
req[0] = slave_addr;
req[1] = function;
uint8_t hi, lo;
mb_split(address, &hi, &lo);
req[2] = hi;
req[3] = lo;
if (function == MODBUS_FC_WRITE_SINGLE_REGISTER) {
mb_split(value, &hi, &lo);
req[4] = hi;
req[5] = lo;
// add crc
uint16_t crc = modbus_crc16(req, 6);
req[6] = crc & 0xFF;
req[7] = (crc >> 8) & 0xFF;
return 8;
} else if (function == MODBUS_FC_READ_HOLDING_REGISTERS) {
mb_split(value, &hi, &lo); // value = number of registers to read
req[4] = hi;
req[5] = lo;
// add crc
uint16_t crc = modbus_crc16(req, 6);
req[6] = crc & 0xFF;
req[7] = (crc >> 8) & 0xFF;
return 8;
}
return 0;
}
uint8_t modbus_process_response(uint8_t* buf, uint16_t len, uint16_t* value) {
if (len < MB_MIN_LEN) {
return MODBUS_ERROR_VALUE;
}
// check for error response
if (buf[1] & 0x80) {
return buf[2];
}
// verify crc
uint16_t rcv_crc = mb_word(buf[len - 1], buf[len - 2]);
uint16_t calc_crc = modbus_crc16(buf, len - 2);
if (rcv_crc != calc_crc) {
return MODBUS_ERROR_VALUE;
}
switch (buf[1]) {
case MODBUS_FC_WRITE_SINGLE_REGISTER:
if (len != MB_WREG_LEN) {
return MODBUS_ERROR_VALUE;
}
*value = mb_word(buf[4], buf[5]);
break;
case MODBUS_FC_READ_HOLDING_REGISTERS:
if (len < 5) {
return MODBUS_ERROR_VALUE;
}
uint8_t byte_count = buf[2];
for (uint8_t i = 0; i < byte_count / 2; i++) {
value[i] = mb_word(buf[3 + i * 2], buf[4 + i * 2]);
}
break;
default:
return MODBUS_ERROR_FUNCTION;
}
return MODBUS_ERROR_NONE;
}
void modbus_init(modbus_context_t* ctx,
void (*response_callback)(uint8_t*, uint16_t, uint16_t),
void (*error_callback)(uint8_t)) {
while (rs485_available()) {
uint8_t byte = rs485_read();
DEBUG_PRINT("Flushed stale byte: 0x%02X\n", byte);
}
ctx->state = MODBUS_IDLE;
ctx->last_send_time = 0;
ctx->response_timeout = 100; // Default 100ms timeout
ctx->rx_len = 0;
ctx->current_bit = 1;
ctx->last_value = 0;
ctx->on_response = response_callback;
ctx->on_error = error_callback;
}
void modbus_set_timeout(modbus_context_t* ctx, uint32_t timeout_ms) {
ctx->response_timeout = timeout_ms;
}
uint8_t modbus_send_request(modbus_context_t* ctx, uint8_t slave_addr,
uint8_t function, uint16_t address,
uint16_t value) {
if (ctx->state != MODBUS_IDLE) {
return 0; // Busy
}
uint16_t len =
modbus_create_request(ctx->buffer, slave_addr, function, address, value);
rs485_send(ctx->buffer, len);
ctx->last_send_time = millis();
ctx->rx_len = 0;
ctx->state = MODBUS_WAITING_RESPONSE;
return 1; // Success
}
void modbus_process(modbus_context_t* ctx) {
uint32_t current_time = millis();
switch (ctx->state) {
case MODBUS_IDLE:
break;
case MODBUS_WAITING_RESPONSE:
// Check for timeout
if (current_time - ctx->last_send_time >= ctx->response_timeout) {
DEBUG_PRINT("Timeout after %lu ms with %d bytes received",
current_time - ctx->last_send_time, ctx->rx_len);
if (ctx->on_error) {
ctx->on_error(MODBUS_ERROR_TIMEOUT);
}
ctx->state = MODBUS_IDLE;
break;
}
// Read available data
while (rs485_available() && ctx->rx_len < sizeof(ctx->buffer)) {
ctx->buffer[ctx->rx_len++] = rs485_read();
// DEBUG_PRINT("Received byte: 0x%02X\n", ctx->buffer[ctx->rx_len - 1]);
if (ctx->rx_len >= MB_MIN_LEN) {
// holding reg
if (ctx->buffer[1] == MODBUS_FC_READ_HOLDING_REGISTERS) {
if (ctx->rx_len >= 3 && ctx->rx_len >= (3 + ctx->buffer[2] + 2)) {
ctx->state = MODBUS_PROCESS_RESPONSE;
break;
}
}
// single reg w
else if (ctx->buffer[1] == MODBUS_FC_WRITE_SINGLE_REGISTER) {
if (ctx->rx_len >= MB_WREG_LEN) {
ctx->state = MODBUS_PROCESS_RESPONSE;
break;
}
}
else if (ctx->buffer[1] & 0x80) {
if (ctx->rx_len >= 5) { // err 5b
ctx->state = MODBUS_PROCESS_RESPONSE;
break;
}
}
}
}
break;
case MODBUS_PROCESS_RESPONSE:
uint16_t value;
uint8_t result =
modbus_process_response(ctx->buffer, ctx->rx_len, &value);
if (result == MODBUS_ERROR_NONE) {
if (ctx->on_response) {
ctx->on_response(ctx->buffer, ctx->rx_len, value);
}
ctx->last_value = value;
} else if (ctx->on_error) {
ctx->on_error(result);
}
ctx->state = MODBUS_IDLE;
break;
}
}

407
src/mqtt_handler.c Normal file
View File

@@ -0,0 +1,407 @@
#include "mqtt_handler.h"
#include <MQTT/MQTTClient.h>
#include <socket.h>
#include <string.h>
#include "debug.h"
#include "modbus_handler.h"
#include "systick.h"
// MQTT
#define MQTT_YIELD_INTERVAL 100 // 100ms between yields in main loop
#define MQTT_MAX_PACKET_WAIT 20 // Only wait up to 20ms for packet processing
#define MQTT_RECONNECT_INTERVAL 5000 // 5 seconds between reconnection attempts
// Homie convention constants
#define HOMIE_VERSION "4.0"
#define HOMIE_STATE_READY "ready"
#define HOMIE_STATE_LOST "lost"
#define HOMIE_STATE_SLEEPING "sleeping"
#define HOMIE_STATE_DISCONNECTED "disconnected"
#define MAX_PAYLOAD_LENGTH 256
// TODO:
// Property definitions
typedef enum {
PROP_STATE, // for relay
PROP_MOISTURE, // for soil sensor
PROP_TEMPERATURE, // for soil sensor and thermometer
} device_property_t;
// Parse Homie topic format: homie/node-id/device-name/property/[set|get]
// Returns: 1 if successful, 0 if invalid format or buffer overflow
static uint8_t parse_homie_topic(const char* topic, size_t topic_len,
char* device_name, size_t name_max,
char* property, size_t prop_max,
uint8_t* is_set) {
const char* segment_start = topic;
const char* topic_end = topic + topic_len;
uint8_t segment = 0;
// Skip first three segments (homie/node-id/device-name/)
while (segment < 3 && segment_start < topic_end) {
const char* slash = memchr(segment_start, '/', topic_end - segment_start);
if (!slash) return 0;
if (segment == 2) {
size_t len = slash - segment_start;
if (len >= name_max) return 0;
memcpy(device_name, segment_start, len);
device_name[len] = '\0';
}
segment_start = slash + 1;
segment++;
}
const char* slash = memchr(segment_start, '/', topic_end - segment_start);
if (!slash) return 0;
size_t len = slash - segment_start;
if (len >= prop_max) return 0;
memcpy(property, segment_start, len);
property[len] = '\0';
segment_start = slash + 1;
if (segment_start >= topic_end) return 0; // Missing set/get
*is_set = (*segment_start == 's');
return 1;
}
// MQTT client
int setup_mqtt_client(Network* network, ch32_mqtt_options_t* opts,
MQTTClient* client) {
static unsigned char tx_buffer[MQTT_TX_BUFFER_SIZE];
static unsigned char rx_buffer[MQTT_RX_BUFFER_SIZE];
int rc;
uint8_t target_ip[] = MQTT_SERVER_IP;
// Initialize network
NewNetwork(network, TCP_SOCKET);
rc = ConnectNetwork(network, target_ip, MQTT_PORT);
if (rc != SOCK_OK) {
DEBUG_PRINT("Network connection failed: %d\n", rc);
return -1;
}
// Initialize the MQTT client
MQTTClientInit(client, network, MQTT_COMMAND_TIMEOUT_MS, tx_buffer,
sizeof(tx_buffer), rx_buffer, sizeof(rx_buffer));
// Setup MQTT connection data
MQTTPacket_connectData connect_data = MQTTPacket_connectData_initializer;
// Configure Last Will and Testament
char will_topic[MAX_TOPIC_LENGTH];
snprintf(will_topic, sizeof(will_topic), "homie/%s/$state", NODE_CONFIG.id);
connect_data.willFlag = 1; // Enable LWT
connect_data.will =
(MQTTPacket_willOptions)MQTTPacket_willOptions_initializer;
connect_data.will.topicName.cstring = will_topic;
connect_data.will.message.cstring = HOMIE_STATE_LOST;
connect_data.will.retained = 1;
connect_data.will.qos = QOS1;
// rest
connect_data.MQTTVersion = 3;
connect_data.clientID.cstring = opts->clientid;
connect_data.username.cstring = opts->username;
connect_data.password.cstring = opts->password;
connect_data.keepAliveInterval = MQTT_KEEP_ALIVE_INTERVAL;
connect_data.cleansession = 1;
// Connect to MQTT broker
rc = MQTTConnect(client, &connect_data);
if (rc != 0) {
DEBUG_PRINT("Failed to connect: %d\n", rc);
return -2;
}
return 0;
}
int subscribe_to_topic(MQTTClient* client, const char* topic, enum QoS qos,
messageHandler message_callback) {
int rc = MQTTSubscribe(client, topic, qos, message_callback);
if (rc != 0) {
DEBUG_PRINT("Failed to subscribe to %s: %d\n", topic, rc);
return rc;
}
return 0;
}
void publish_message(MQTTClient* client, const char* payload,
const char* topic) {
MQTTMessage message = {.qos = QOS0,
.retained = 0,
.dup = 0,
.payload = (void*)payload,
.payloadlen = strlen(payload)
};
if (MQTTPublish(client, topic, &message) != 0) {
DEBUG_PRINT("Publish failed\n");
} else {
DEBUG_PRINT("Message published successfully\n");
}
}
// publish retained messages
static void publish_retained(MQTTClient* client, const char* topic,
const char* payload) {
MQTTMessage message = {.qos = QOS1,
.retained = 1,
.dup = 0,
.payload = (void*)payload,
.payloadlen = strlen(payload)};
if (MQTTPublish(client, topic, &message) != 0) {
DEBUG_PRINT("Failed to publish to %s\n", topic);
}
}
// Send state update
void publish_value(MQTTClient* client, const char* device_name,
const char* property, uint16_t value) {
DEBUG_PRINT("publish_value(device_name=%s, property=%s, value=%u)\n",
device_name, property, value);
char topic[MAX_TOPIC_LENGTH];
char payload[17]; // 16 bits + null terminator
snprintf(topic, sizeof(topic), "homie/%s/%s/%s", NODE_CONFIG.id, device_name,
property);
// formta based on property type
if (strcmp(property, "state") == 0) {
for (int i = 15; i >= 0; i--) {
payload[15 - i] = '0' + ((value >> i) & 1);
}
payload[16] = '\0';
} else {
// todo:
return;
}
MQTTMessage message = {.qos = QOS1,
.retained = 1,
.payload = payload,
.payloadlen = strlen(payload)};
if (MQTTPublish(client, topic, &message) != 0) {
DEBUG_PRINT("Failed to publish to %s\n", topic);
}
}
static void publish_device_attributes(MQTTClient* client) {
char topic[MAX_TOPIC_LENGTH];
static char nodes_list[MAX_PAYLOAD_LENGTH];
char* ptr = nodes_list;
size_t remaining = sizeof(nodes_list);
// Device attributes
snprintf(topic, sizeof(topic), "homie/%s/$homie", NODE_CONFIG.id);
publish_retained(client, topic, HOMIE_VERSION);
snprintf(topic, sizeof(topic), "homie/%s/$name", NODE_CONFIG.id);
publish_retained(client, topic, NODE_CONFIG.name);
snprintf(topic, sizeof(topic), "homie/%s/$state", NODE_CONFIG.id);
publish_retained(client, topic, HOMIE_STATE_READY);
ptr = nodes_list;
*ptr = '\0';
for (int i = 0; i < RS485_DEVICE_COUNT; i++) {
if (i > 0 && remaining > 1) {
*ptr++ = ',';
remaining--;
}
size_t len = strlen(RS485_DEVICES[i].name);
if (len >= remaining) break;
memcpy(ptr, RS485_DEVICES[i].name, len);
ptr += len;
remaining -= len;
}
*ptr = '\0';
snprintf(topic, sizeof(topic), "homie/%s/$nodes", NODE_CONFIG.id);
publish_retained(client, topic, nodes_list);
// loc attribute
if (NODE_CONFIG.location[0] != '\0') {
snprintf(topic, sizeof(topic), "homie/%s/$location", NODE_CONFIG.id);
publish_retained(client, topic, NODE_CONFIG.location);
}
}
static void publish_node_attributes(MQTTClient* client,
const rs485_device_t* device) {
char topic[MAX_TOPIC_LENGTH];
// Node base attributes
snprintf(topic, sizeof(topic), "homie/%s/%s/$name", NODE_CONFIG.id,
device->name);
publish_retained(client, topic, device->name);
// Set properties based on device type
switch (device->type) {
case DEVICE_RELAY:
snprintf(topic, sizeof(topic), "homie/%s/%s/$properties", NODE_CONFIG.id,
device->name);
publish_retained(client, topic, "state");
snprintf(topic, sizeof(topic), "homie/%s/%s/state/$name", NODE_CONFIG.id,
device->name);
publish_retained(client, topic, "State");
snprintf(topic, sizeof(topic), "homie/%s/%s/state/$datatype",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "boolean");
snprintf(topic, sizeof(topic), "homie/%s/%s/state/$settable",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "true");
break;
case DEVICE_SOIL_SENSOR:
snprintf(topic, sizeof(topic), "homie/%s/%s/$properties", NODE_CONFIG.id,
device->name);
publish_retained(client, topic, "moisture,temperature");
snprintf(topic, sizeof(topic), "homie/%s/%s/moisture/$name",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "Moisture Level");
snprintf(topic, sizeof(topic), "homie/%s/%s/moisture/$datatype",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "integer");
snprintf(topic, sizeof(topic), "homie/%s/%s/moisture/$unit",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "%");
// Temperature property
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$name",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "Temperature");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$datatype",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "float");
snprintf(topic, sizeof(topic), "homie/%s/%s/temperature/$unit",
NODE_CONFIG.id, device->name);
publish_retained(client, topic, "°C");
break;
case DEVICE_THERMOMETER:
// TODO
DEBUG_PRINT("not implemented\n");
}
}
// Initialize MQTT with Homie discovery
void mqtt_init(mqtt_state_t* state) {
state->opts.clientid = (char*)NODE_CONFIG.id; // Use node ID as client ID
state->opts.username = "";
state->opts.password = "";
state->opts.qos = QOS1;
state->last_reconnect = 0;
state->last_yield = 0;
state->is_connected = 0;
}
// Find device by name and return its index
static int8_t find_device_index(const char* name) {
for (uint8_t i = 0; i < RS485_DEVICE_COUNT; i++) {
if (strcmp(RS485_DEVICES[i].name, name) == 0) {
return i;
}
}
return -1;
}
void message_arrived(MessageData* md) {
if (!md || !md->message || !md->topicName) {
DEBUG_PRINT("Error: MessageData is NULL.\n");
return;
}
char device_name[16];
char property[16];
uint8_t is_set;
if (!parse_homie_topic(md->topicName->lenstring.data,
md->topicName->lenstring.len, device_name,
sizeof(device_name), property, sizeof(property),
&is_set)) {
DEBUG_PRINT("Failed to parse topic\n");
return;
}
// For set operations, parse value
if (is_set && md->message->payloadlen > 0) {
uint16_t value = 0;
int8_t idx = find_device_index(device_name);
if (idx < 0) return;
if (RS485_DEVICES[idx].type == DEVICE_RELAY) {
if (md->message->payloadlen != 16) return;
char* str = (char*)md->message->payload;
for (int i = 0; i < 16; i++) {
value = (value << 1) | (str[i] - '0');
}
} else {
// todo:
DEBUG_PRINT("not implemented\n");
}
modbus_handler_send_request(idx, property, is_set, value);
}
}
void mqtt_process(mqtt_state_t* state) {
uint32_t now = millis();
int rc;
static uint8_t discovery_published = 0;
if (!state->is_connected) {
if (now - state->last_reconnect >= MQTT_RECONNECT_INTERVAL) {
rc = setup_mqtt_client(&state->network, &state->opts, &state->client);
if (rc == 0) {
state->is_connected = 1;
if (!discovery_published) {
publish_device_attributes(&state->client);
for (int i = 0; i < RS485_DEVICE_COUNT; i++) {
publish_node_attributes(&state->client, &RS485_DEVICES[i]);
}
discovery_published = 1;
}
char sub_topic[MAX_TOPIC_LENGTH];
snprintf(sub_topic, sizeof(sub_topic), "homie/%s/+/+/set",
NODE_CONFIG.id);
rc = subscribe_to_topic(&state->client, sub_topic, QOS1,
message_arrived);
if (rc != 0) {
state->is_connected = 0;
}
}
state->last_reconnect = now;
}
} else if (now - state->last_yield >= MQTT_YIELD_INTERVAL) {
rc = MQTTYield(&state->client, MQTT_MAX_PACKET_WAIT);
if (rc != 0) {
state->is_connected = 0;
}
state->last_yield = now;
}
}

60
src/rs485.c Normal file
View File

@@ -0,0 +1,60 @@
#include "rs485.h"
#include "ch32v003fun.h"
#define RS485_TX_EN (1 << 14) // PB14
#define RS485_RX_EN (1 << 15) // PB15
void rs485_init(int uart_brr) {
RCC->APB2PCENR |= RCC_APB2Periph_GPIOA | // Enable GPIOA
RCC_APB2Periph_GPIOB | // Enable GPIOB
RCC_APB2Periph_USART1; // Enable USART1
// configure uart1 pins (PA9=TX, PA10=RX)
GPIOA->CFGHR &=
~(0xf << (4 * 1) | 0xf << (4 * 2)); // Clear PA9 & PA10 config
GPIOA->CFGHR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP_AF)
<< (4 * 1); // PA9 (TX)
GPIOA->CFGHR |= GPIO_CNF_IN_FLOATING << (4 * 2); // PA10 (RX)
// configure rs485 direction control pins (PB14=TX_EN, PB15=RX_EN)
GPIOB->CFGHR &=
~(0xf << (4 * 6) | 0xf << (4 * 7)); // Clear PB14 & PB15 config
GPIOB->CFGHR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)
<< (4 * 6); // PB14 (TX_EN)
GPIOB->CFGHR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)
<< (4 * 7); // PB15 (RX_EN)
// initial state: rx mode
GPIOB->BCR = RS485_TX_EN; // TX_EN low
GPIOB->BSHR = RS485_RX_EN; // RX_EN high
// uart1 configuration
USART1->CTLR1 =
USART_WordLength_8b | USART_Parity_No | USART_Mode_Tx | USART_Mode_Rx;
USART1->CTLR2 = USART_StopBits_1;
USART1->CTLR3 = USART_HardwareFlowControl_None;
USART1->BRR = uart_brr;
USART1->CTLR1 |= CTLR1_UE_Set;
}
void rs485_send(uint8_t *buf, uint16_t len) {
// enable tx mode
GPIOB->BSHR = RS485_TX_EN; // TX_EN high
GPIOB->BSHR = RS485_RX_EN; // RX_EN low
for (uint16_t i = 0; i < len; i++) {
while (!(USART1->STATR & USART_FLAG_TXE));
USART1->DATAR = buf[i];
}
while (!(USART1->STATR & USART_FLAG_TC));
// switch back to rx mode
GPIOB->BCR = RS485_TX_EN; // TX_EN low
GPIOB->BCR = RS485_RX_EN; // RX_EN high
}
uint8_t rs485_available(void) { return (USART1->STATR & USART_FLAG_RXNE) != 0; }
uint8_t rs485_read(void) { return USART1->DATAR & 0xFF; }

35
src/system_init.c Normal file
View File

@@ -0,0 +1,35 @@
#include "system_init.h"
#include "ch32v003fun.h"
#include "debug.h"
#include "dhcp.h"
#include "gpio.h"
#include "rs485.h"
#include "spi_dma.h"
#include "systick.h"
#include "timer.h"
#include "uart.h"
#define DHCP_TIMEOUT_MS 15000
void init_system(void) {
SystemInit();
init_gpio();
init_systick();
tim2_init();
init_spidma();
init_uart(UART_BRR_APB1);
rs485_init(UART_BRR_APB2);
}
int wait_for_dhcp(void) {
uint32_t start = millis();
while (dhcp_get_state() != DHCP_STATE_LEASED) {
if (millis() - start >= DHCP_TIMEOUT_MS) {
DEBUG_PRINT("DHCP timeout\n");
return 0;
}
dhcp_process();
}
return 1;
}

View File

@@ -1,10 +1,6 @@
#include "w5500.h"
#include <DHCP/dhcp.h>
#include <DNS/dns.h>
#include <MQTT/MQTTClient.h>
#include <W5500/w5500.h>
#include <socket.h>
#include <string.h>
#include "ch32v003fun.h"
@@ -13,8 +9,6 @@
#include "spi_dma.h"
#include "systick.h"
static uint8_t dns_buffer[512];
void configure_network(void) {
DEBUG_PRINT("===\n");
DEBUG_PRINT("Starting network configuration...\n");
@@ -29,93 +23,29 @@ void configure_network(void) {
wizchip_init(rx_tx_buff_sizes, rx_tx_buff_sizes);
}
// static uint8_t dns_buffer[512];
// todo: rm !!!
void resolve_domain_name(const char* domain_name) {
DEBUG_PRINT("Resolving domain name \"%s\"...\n", domain_name);
// void resolve_domain_name(const char* domain_name) {
// DEBUG_PRINT("Resolving domain name \"%s\"...\n", domain_name);
DNS_init(DNS_SOCKET, dns_buffer);
// cloudflare dns
uint8_t dns[] = {1, 1, 1, 1};
uint8_t addr[4];
int8_t res;
uint8_t retries = 0;
// DNS_init(DNS_SOCKET, dns_buffer);
// // cloudflare dns
// uint8_t dns[] = {1, 1, 1, 1};
// uint8_t addr[4];
// int8_t res;
// uint8_t retries = 0;
while (retries < 3) {
Delay_Ms(250);
// while (retries < 3) {
// Delay_Ms(250);
res = DNS_run(dns, (uint8_t*)domain_name, addr);
if (res == 1) {
DEBUG_PRINT("Result: %d.%d.%d.%d\n", addr[0], addr[1], addr[2], addr[3]);
break;
} else {
DEBUG_PRINT("DNS_run() failed, res = %d. Retries: %u\n", res, retries);
}
retries++;
}
}
int setup_mqtt_client(Network* network, ch32_mqtt_options_t* opts,
MQTTClient* client) {
static unsigned char tx_buffer[MQTT_TX_BUFFER_SIZE];
static unsigned char rx_buffer[MQTT_RX_BUFFER_SIZE];
int rc;
uint8_t target_ip[] = MQTT_TARGET_IP;
// Initialize network
NewNetwork(network, TCP_SOCKET);
rc = ConnectNetwork(network, target_ip, MQTT_TARGET_PORT);
if (rc != SOCK_OK) {
DEBUG_PRINT("Network connection failed: %d\n", rc);
return -1;
}
// Initialize the MQTT client
MQTTClientInit(client, network, MQTT_COMMAND_TIMEOUT_MS, tx_buffer,
sizeof(tx_buffer), rx_buffer, sizeof(rx_buffer));
// Setup MQTT connection data
MQTTPacket_connectData connect_data = MQTTPacket_connectData_initializer;
connect_data.willFlag = 0;
connect_data.MQTTVersion = 3;
connect_data.clientID.cstring = opts->clientid;
connect_data.username.cstring = opts->username;
connect_data.password.cstring = opts->password;
connect_data.keepAliveInterval = MQTT_KEEP_ALIVE_INTERVAL;
connect_data.cleansession = 1;
// Connect to MQTT broker
rc = MQTTConnect(client, &connect_data);
if (rc != 0) {
DEBUG_PRINT("Failed to connect: %d\n", rc);
return -2;
}
return 0;
}
int subscribe_to_topic(MQTTClient* client, const char* topic, enum QoS qos,
messageHandler message_callback) {
int rc = MQTTSubscribe(client, topic, qos, message_callback);
if (rc != 0) {
DEBUG_PRINT("Failed to subscribe to %s: %d\n", topic, rc);
return rc;
}
return 0;
}
void publish_message(MQTTClient* client, const char* payload,
const char* topic) {
MQTTMessage message = {.qos = QOS0,
.retained = 0,
.dup = 0,
.payload = (void*)payload,
.payloadlen = strlen(payload)
};
if (MQTTPublish(client, topic, &message) != 0) {
DEBUG_PRINT("Publish failed\n");
} else {
DEBUG_PRINT("Message published successfully\n");
}
}
// res = DNS_run(dns, (uint8_t*)domain_name, addr);
// if (res == 1) {
// DEBUG_PRINT("Result: %d.%d.%d.%d\n", addr[0], addr[1], addr[2],
// addr[3]); break;
// } else {
// DEBUG_PRINT("DNS_run() failed, res = %d. Retries: %u\n", res, retries);
// }
// retries++;
// }
// }