Files
unsloth-train-scripts/main.py
2025-02-13 21:42:03 +06:00

78 lines
2.5 KiB
Python

import argparse
from config import TrainingConfig, WandBConfig
from data_loader import DataLoader
from model_handler import ModelHandler
from trainer import CustomTrainer
def parse_args():
parser = argparse.ArgumentParser(description="Train a language model with LoRA")
# wandb args
wandb_group = parser.add_argument_group("Weights & Biases")
wandb_group.add_argument(
"--wandb_project", type=str, default="lora-training", help="WandB project name"
)
wandb_group.add_argument("--wandb_name", type=str, help="WandB run name")
wandb_group.add_argument("--wandb_entity", type=str, help="WandB entity/username")
wandb_group.add_argument(
"--wandb_tags", type=str, nargs="+", help="WandB tags for the run"
)
wandb_group.add_argument("--wandb_notes", type=str, help="Notes for the WandB run")
# rest
parser.add_argument(
"--base_model",
type=str,
default="unsloth/Qwen2.5-7B",
help="Base model to fine-tune",
)
parser.add_argument(
"--dataset", type=str, required=True, help="Path to the training dataset"
)
parser.add_argument(
"--output_dir", type=str, default="/output/", help="Directory to save the model"
)
parser.add_argument("--hub_token", type=str, help="Hugging Face Hub token")
return parser.parse_args()
def main():
args = parse_args()
try:
wandb_config = WandBConfig(
enabled=args.wandb_project is not None,
project=args.wandb_project or "lora-training",
name=args.wandb_name,
entity=args.wandb_entity,
tags=args.wandb_tags,
notes=args.wandb_notes,
)
config = TrainingConfig(
base_model=args.base_model, output_dir=args.output_dir, wandb=wandb_config
)
model_handler = ModelHandler(config)
model, tokenizer = model_handler.setup_model()
data_loader = DataLoader(tokenizer, config.data.template)
dataset = data_loader.load_dataset(args.dataset)
trainer_handler = CustomTrainer(config)
trainer = trainer_handler.create_trainer(model, tokenizer, dataset)
trainer_stats = trainer_handler.train_and_log(trainer)
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
print("Training completed successfully!")
except Exception as e:
print(f"Error during training: {e}")
raise
if __name__ == "__main__":
main()