chore: wip torchtune, dataset merger

This commit is contained in:
2025-02-12 23:20:44 +06:00
parent d59dffb33e
commit 66e61c9aad
2 changed files with 240 additions and 0 deletions

120
merger.py Executable file
View File

@@ -0,0 +1,120 @@
#!/usr/bin/env python3
import json
import argparse
import random
from collections.abc import Sequence
from pathlib import Path
from typing import TypedDict
class AlpacaEntry(TypedDict):
input: str
output: str
instruction: str | None
class Args(argparse.Namespace):
def __init__(self) -> None:
super().__init__()
self.file1: str = ""
self.file2: str = ""
self.output: str = ""
self.shuffle: bool = False
self.seed: int | None = None
self.omit_instruction: bool = False
def load_file(file_path: str) -> Sequence[AlpacaEntry]:
path = Path(file_path)
is_jsonl = path.suffix.lower() in (".jsonl", ".ljson")
with open(file_path, "r", encoding="utf-8") as f:
if is_jsonl:
data: list[AlpacaEntry] = []
for line in f:
line = line.strip()
if line: # skip empty lines
entry: AlpacaEntry = json.loads(line)
data.append(entry)
else:
data = json.load(f)
# we need input and output f ields
for item in data:
if not all(key in item for key in ["input", "output"]):
raise ValueError(
f"Missing required fields in {file_path}. Each item must have 'input' and 'output' fields."
)
return data
def write_output(data: Sequence[AlpacaEntry], output_path: str) -> None:
path = Path(output_path)
is_jsonl = path.suffix.lower() in (".jsonl", ".ljson")
print(path, is_jsonl)
with open(output_path, "w", encoding="utf-8") as f:
if is_jsonl:
for item in data:
_ = f.write(json.dumps(item, ensure_ascii=False) + "\n")
else:
json.dump(data, f, ensure_ascii=False, indent=2)
def merge_datasets(
file1: str, file2: str, shuffle: bool = False, omit_instruction: bool = False
) -> Sequence[AlpacaEntry]:
data1 = load_file(file1)
data2 = load_file(file2)
merged_data = list(data1) + list(data2)
if omit_instruction:
for item in merged_data:
_ = item.pop("instruction", None)
if shuffle:
random.shuffle(merged_data)
return merged_data
def parse_args() -> Args:
parser = argparse.ArgumentParser(description="Merge two Alpaca-format JSON files")
_ = parser.add_argument("file1", type=str, help="Path to first JSON file")
_ = parser.add_argument("file2", type=str, help="Path to second JSON file")
_ = parser.add_argument("output", type=str, help="Path to output merged JSON file")
_ = parser.add_argument(
"--shuffle", action="store_true", help="Shuffle the merged dataset"
)
_ = parser.add_argument("--seed", type=int, help="Random seed for shuffling")
_ = parser.add_argument(
"--omit-instruction",
action="store_true",
help="Omit instruction field from output",
)
return parser.parse_args(namespace=Args())
def main() -> None:
args = parse_args()
try:
if args.seed is not None:
random.seed(args.seed)
merged_data = merge_datasets(
args.file1, args.file2, args.shuffle, args.omit_instruction
)
write_output(merged_data, args.output)
print(f"Successfully merged files. Total entries: {len(merged_data)}")
except Exception as e:
print(f"Error: {str(e)}")
exit(1)
if __name__ == "__main__":
main()

120
train_torchtune.yaml Normal file
View File

@@ -0,0 +1,120 @@
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Qwen2.5 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-7B-Instruct --output-dir /tmp/Qwen2.5-7B-Instruct
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config qwen2_5/7B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
output_dir: /home/mira/models/qwen2_5_7B_tune/lora_single_device # /tmp may be deleted by your system. Change it to your preference.
# Model Arguments
model:
_component_: torchtune.models.qwen2_5.lora_qwen2_5_7b_base
lora_attn_modules: ["q_proj", "k_proj", "v_proj", "output_proj"]
apply_lora_to_mlp: True
apply_lora_to_output: True
lora_rank: 32 # higher increases accuracy and memory
lora_alpha: 64 # usually alpha=2*rank
lora_dropout: 0.05
quantize_base: True
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /home/mira/models/Qwen2.5-7B-Base/vocab.json
merges_file: /home/mira/models/Qwen2.5-7B-Base/merges.txt
max_seq_len: 16384
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /home/mira/models/Qwen2.5-7B-Base
checkpoint_files:
[
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: QWEN2
save_every_n_steps: 100
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: True # True increases speed
seed: 42
shuffle: False
batch_size: 1
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 1e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 32 # Use to increase effective batch size
clip_grad_norm: null
compile: True # torch.compile the model + loss, True increases speed + decreases memory
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 5
log_peak_memory_stats: True
# Environment
device: cuda
dtype: fp16
# Activations Offloading
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: True # True reduces memory
# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1